Mucosal membranes, their interactions to microbial infections and immune susceptibility in human hosts

  • Ravi Kant Upadhyay Department of Zoology, Deen Dayal Upadhyaya Gorakhpur University, Gorakhpur, India
Keywords: Mucosal membrane, Innate and humoral immune defense, Antigen delivery systems, Adjuvants, Vaccines


This article presents mucosal immune defense in response to various pathogenic infections in different hosts including man. Internally, the mucosal layer (membrane) covers the respiratory, digestive, nasal, and urogenital systems and serves as a physical barrier against many groups of infections. The host pathogen's interaction with membrane receptors is highlighted in this article, as well as the commensal gut microbiota's protective function in directing both general and targeted immune defense. In order to combat numerous diseases of various types, this review emphasizes the importance of crosstalk between mucosal locations, mucosal adjuvant design, and antigen delivery mechanisms. Additionally, it denotes the function of inflammasomes, lipocalin 2, Muc2 hyaluronan, and probiotics in maintaining homeostasis, regulating the gut microbiota, and enhancing immunological protection against enteric infection and gastrointestinal inflammation. For novel potential vaccines that could activate innate and adaptive immunity in mucosal tissue, there is an urgent need to look for new protective antigens, delivery mechanisms, and mucosal adjuvants. In order to prevent the spread of infections that are drug-resistant, seek protection, and assure host immunological tolerance, this article emphasizes the necessity for new antigens in the construction of new vaccines.



Download data is not yet available.


1. Mucosal immunology - Latest research and news. Retrieved 2016-11-08.
2. Zheng D, Liwinski T, Elinav E. Interaction between microbiota and immunity in health and disease. Cell Res. 2020; 30(6): 492.
3. Brandtzaeg P, Isolauri E, Prescott SL (eds.). ABC of Mucosal Immunology. Nestle Nutrition Workshop Series. Paediatric Programme, Nestlé Nutrition Institute Workshop Series: Pediatric Program, Basel: Karger, 2009; 64: 23.
4. Hodgins DC, Yuan L, Parreño V, Corbeil LB, Saif LJ. Mucosal Veterinary Vaccines: Comparative Vaccinology. Mucosal Immunology. 2005: 1085-1107.
5. Okumura R, Takeda K. Maintenance of intestinal homeostasis by mucosal barriers. Inflamm Regener. 2018; 38(1): 5.
6. Shan M, Gentile M, Yeiser JR, Walland AC, Bornstein VU, Chen K, et al. Mucus Enhances Gut Homeostasis and Oral Tolerance by Delivering Immunoregulatory Signals. Science. 2013; 342(6157): 447.
7. Torow N, Marsland BJ, Hornef MW, Gollwitzer ES. Neonatal mucosal immunology. Mucosal Immunol. 2017; 10(1): 5.
8. Olivares-Villagómez D, Van Kaer L. Intestinal Intraepithelial Lymphocytes: Sentinels of the Mucosal Barrier. Trends Immunol. 2018; 39(4): 264-275.
9. Nie S, Yuan Y. The Role of Gastric Mucosal Immunity in Gastric Diseases. J Immunol Res. 2020; 2020: 7927054.
10. Butler JE, Rainard P, Lippolis J, Salmon H, Kacskovics I. The Mammary Gland in Mucosal and Regional Immunity. Mucosal Immunol. 2015; 2269.
11. O’Sullivan NL, Montgomery PC. Ocular Mucosal Immunity. Mucosal Immunol. 2015; 1873-1897.
12. Drummond RA, Lionakis MS. Organ-specific mechanisms linking innate and adaptive antifungal immunity. Semin Cell Dev Biol. 2019; 89: 78.
13. Break TJ, Oikonomou V, Dutzan N, Desai JV, Swidergall M, Freiwald T, et al. Aberrant type 1 immunity drives susceptibility to mucosal fungal infections. Science. 2021; 371(6526): eaay5731.
14. d'Enfert C, Kaune AK, Alaban LR, Chakraborty S, Cole N, Delavy M, et al. The impact of the Fungus-Host-Microbiota interplay upon Candida albicans infections: current knowledge and new perspectives. FEMS Microbiol Rev. 2021; 45(3): fuaa060.
15. Li Z, Lu G, Meng G. Pathogenic Fungal Infection in the Lung. Front Immunol. 2019; 10: 1524.
16. Mercer DK, O'Neil DA. Innate Inspiration: Antifungal Peptides and Other Immunotherapeutics From the Host Immune Response. Front Immunol. 2020; 11: 2177.
17. Skeldon A, Saleh M. The inflammasomes: molecular effectors of host resistance against bacterial, viral, parasitic, and fungal infections. Front Microbiol. 2011; 2: 15.
18. Wiesner DL, Smith KD, Kotov DI, Nielsen JN, Bohjanen PR, Nielsen K. Regulatory T Cell Induction and Retention in the Lungs Drives Suppression of Detrimental Type 2 Th Cells During Pulmonary Cryptococcal Infection. J Immunol. 2016; 196(1): 365.
19. Verma A, Gaffen SL, Swidergall M. Innate Immunity to Mucosal Candida Infections. J Fungi. 2017; 3(4): 60.
20. Hohl TM. Overview of vertebrate animal models of fungal infection. J Immunol Methods. 2014; 410: 100.
21. Last A, Maurer M, S Mosig A, Gresnigt M, Hube B. In vitro infection models to study fungal-host interactions. FEMS Microbiol Rev. 2021; 45(5): fuab005.
22. Lionakis MS, Iliev ID, Hohl TM. Immunity against fungi. JCI Insight. 2017; 2(11): e93156.
23. Herbst S, Shah A, Mazon Moya M, Marzola V, Jensen B, Reed A, et al. Phagocytosis-dependent activation of a TLR9-BTK-calcineurin-NFAT pathway co-ordinates innate immunity to Aspergillus fumigatus. EMBO Mol Med. 2015; 7(3): 240-258.
24. Delarze E, Brandt L, Trachsel E, Patxot M, Pralong C, Maranzano F, et al. Identification and Characterization of Mediators of Fluconazole Tolerance in Candida albicans. Front Microbiol. 2020; 11: 591140.
25. Roilides E, Zaoutis TE, Katragkou A, Benjamin DK Jr, Walsh TJ. Zygomycosis in neonates: an uncommon but life-threatening infection. Am J Perinatol. 2009; 26(8): 565.
26. Muszewska A, Pawłowska J, Krzyściak P. Biology, systematics, and clinical manifestations of Zygomycota infections. Eur J Clin Microbiol Infect Dis. 2014; 33(8): 1273.
27. Tashiro H, Haraguchi T, Takahashi K, Sadamatsu H, Tajiri R, Takamori A, et al. Clinical impact of advanced chronic kidney disease in patients with non-HIV pulmonary cryptococcosis. BMC Pulm Med. 2020; 20(1): 116.
28. Queiroz-Telles F, de Hoog S, Santos DW, Salgado CG, Vicente VA, Bonifaz A, et al. Chromoblastomycosis. Clin Microbiol Rev. 2017; 30(1): 233-276.
29. Break TJ, Oikonomou V, Dutzan N, Desai JV, Swidergall M, Freiwald T, et al. Aberrant type 1 immunity drives susceptibility to mucosal fungal infections. Science. 2021; 371(6526): eaay5731.
30. Li N, Ma WT, Pang M, Fan QL, Hua JL. The Commensal Microbiota and Viral Infection: A Comprehensive Review. Front Immunol. 2019; 10: 1551.
31. Burrell CJ, Howard CR, Murphy FA. Pathogenesis of Virus Infections. Fenner and White's Medical Virology. 2017; 77-104.
32. Peek SF, Mcguirk SM, Sweeney RW, Cummings KJ. Infectious Diseases of the Gastrointestinal Tract. Rebhun's Dis Dairy Cattle. 2018; 249-356.
33. Rowan-Nash AD, Korry BJ, Mylonakis E, Belenky P. Cross-Domain and Viral Interactions in the Microbiome. Microbiol Mol Biol Rev. 2019; 83(1): e00044-18.
34. Luo X, Liu Y, Ren M, Zhang X, Janne E, Lv M, et al. Consistency of recommendations and methodological quality of guidelines for the diagnosis and treatment of COVID-19. J Evid Based Med. 2021; 14(1): 40.
35. Upadhyay RK. Thermal-Aroma-Organic-Carbon-Fusion Therapy: An Open Air Conventional Method for clearance of nasal air passage, trachea, lungs and immunity boosting against Influenza Virus. Inter J. Zool Invest. 2020; 6(1): 71.
36. Baghbani T, Nikzad H, Azadbakht J, Izadpanah F, Haddad Kashani H. Dual and mutual interaction between microbiota and viral infections: a possible treat for COVID-19. Microb Cell Fact. 2020; 19: 217.
37. Sultan S, El-Mowafy M, Elgaml A, Ahmed TAE, Hassan H, Mottawea W. Metabolic Influences of Gut Microbiota Dysbiosis on Inflammatory Bowel Disease. Front Physiol. 2021; 12: 715506.
38. Freihorst J, Ogra PL. Mucosal immunity and viral infections. Ann Med. 2001; 33(3): 172.
39. Raehtz KD, Barrenäs F, Xu C, Busman-Sahay K, Valentine A, Law L, et al. African green monkeys avoid SIV disease progression by preventing intestinal dysfunction and maintaining mucosal barrier integrity. PLoS Pathog. 2020; 16(3): e1008333.
40. Logerot S, Figueiredo-Morgado S, Charmeteau-de-Muylder B, Sandouk A, Drillet-Dangeard AS, Bomsel M, et al. IL-7-Adjuvanted Vaginal Vaccine Elicits Strong Mucosal Immune Responses in Non-Human Primates. Front Immunol. 2021; 12: 614115.
41. Ciurkiewicz M, Herder V, Beineke A. Beneficial and Detrimental Effects of Regulatory T Cells in Neurotropic Virus Infections. Int J Mol Sci. 2020; 21(5): 1705.
42. Borlongan MC, Kingsbury C, Salazar FE, Toledo ARL, Monroy GR, Sadanandan N, et al. IL-2/IL-2R Antibody Complex Enhances Treg-Induced Neuroprotection by Dampening TNF-α Inflammation in an In Vitro Stroke Model. Neuromol Med. 2021; 23(4): 540-548.
43. Burgess SL, Gilchrist CA, Lynn TC, Petri WA Jr. Parasitic Protozoa and Interactions with the Host Intestinal Microbiota. Infect Immun. 2017; 85(8): e00101.
44. Varikuti S, Jha BK, Holcomb EA, McDaniel JC, Karpurapu M, Srivastava N, et al. The role of vascular endothelium and exosomes in human protozoan parasitic diseases. Vessel Plus. 2020; 4: 28.
45. Kourbeli V, Chontzopoulou E, Moschovou K, Pavlos D, Mavromoustakos T, Papanastasiou IP. An Overview on Target-Based Drug Design against Kinetoplastid Protozoan Infections: Human African Typanosomiasis, Chagas Disease and Leishmaniases. Molecules. 2021; 26(15): 4629.
46. Ivanova DL, Mundhenke TM, Gigley JP. The IL-12- and IL-23-Dependent NK Cell Response Is Essential for Protective Immunity against Secondary Toxoplasma gondii Infection. J Immunol. 2019; 203(11): 2944.
47. Gurung P, Kanneganti TD. Immune responses against protozoan parasites: a focus on the emerging role of Nod-like receptors. Cell Mol Life Sci. 2016; 73(16): 3035.
48. Gurung P, Burton A, Kanneganti TD. NLRP3 inflammasome plays a redundant role with caspase 8 to promote IL-1β-mediated osteomyelitis. Proc Natl Acad Sci USA. 2016; 113(16): 4452.
49. Egan CE, Craven MD, Leng J, Mack M, Simpson KW, Denkers EY. CCR2-dependent intraepithelial lymphocytes mediate inflammatory gut pathology during Toxoplasma gondii infection. Mucosal Immunol. 2009; 2(6): 527.
50. Amezcua Vesely MC, Rodríguez C, Gruppi A, Acosta Rodríguez EV. Interleukin-17 mediated immunity during infections with Trypanosoma cruzi and other protozoans. Biochim Biophys Acta Mol Basis Dis. 2020; 1866(5): 165706.
51. Man SM, Karki R, Kanneganti TD. Molecular mechanisms and functions of pyroptosis, inflammatory caspases and inflammasomes in infectious diseases. Immunol Rev. 2017; 277(1): 61.
52. Leung JM, Graham AL, Knowles SCL. Parasite-Microbiota Interactions With the Vertebrate Gut: Synthesis Through an Ecological Lens. Front Microbiol. 2018; 9: 843.
53. Fekete E, Allain T, Siddiq A, Sosnowski O, Buret AG. Giardia spp. and the Gut Microbiota: Dangerous Liaisons. Front Microbiol. 2021; 11: 618106.
54. Yordanova IA, Zakovic S, Rausch S, Costa G, Levashina E, Hartmann S. Micromanaging Immunity in the Murine Host vs. the Mosquito Vector: Microbiota-Dependent Immune Responses to Intestinal Parasites. Front Cell Infect Microbiol. 2018; 8: 308.
55. Achasova KM, Kozhevnikova EN, Borisova MA, Litvinova EA. Fucose Ameliorates Tritrichomonas sp.-Associated Illness in Antibiotic-Treated Muc2-/- Mice. Int J Mol Sci. 2021; 22(19): 10699.
56. Barratt JL, Harkness J, Marriott D, Ellis JT, Stark D. Importance of nonenteric protozoan infections in immunocompromised people. Clin Microbiol Rev. 2010; 23(4): 795.
57. Samanta I, Bandyopadhyay S. Infectious Diseases. Pet bird diseases and care. Springer, 2017; 13-166.
58. Leung JM, Tiew PY, Mac Aogáin M, Budden KF, Yong VF, Thomas SS, et al. The role of acute and chronic respiratory colonization and infections in the pathogenesis of COPD. Respirology. 2017; 22(4): 634.
59. Battaglia M, Garrett-Sinha LA. Bacterial infections in lupus: Roles in promoting immune activation and in pathogenesis of the disease. J Transl Autoimmun. 2020;4: 100078.
Hanada S, Pirzadeh M, Carver KY, Deng JC. Respiratory Viral Infection-Induced Microbiome Alterations and Secondary Bacterial Pneumonia. Front Immunol. 2018; 9: 2640.
60. Khatun S, Appidi T, Rengan AK. The role played by bacterial infections in the onset and metastasis of cancer. Curr Res Microb Sci. 2021; 2: 100078.
61. Beck K, Ohno H, Satoh-Takayama N. Innate Lymphoid Cells: Important Regulators of Host-Bacteria Interaction for Border Defense. Microorganisms. 2020; 8(9): 1342.
62. Elemam NM, Hannawi S, Maghazachi AA. Innate Lymphoid Cells (ILCs) as Mediators of Inflammation, Release of Cytokines and Lytic Molecules. Toxins. 2017; 9(12): 398.
63. Chan CY, St John AL, Abraham SN. Plasticity in mast cell responses during bacterial infections. Curr Opin Microbiol. 2012; 15(1): 78.
64. Poggi A, Benelli R, Venè R, Costa D, Ferrari N, Tosetti F, Zocchi MR. Human Gut-Associated Natural Killer Cells in Health and Disease. Front Immunol. 2019; 10: 961.
65. Storek KM, Monack DM. Bacterial recognition pathways that lead to inflammasome activation. Immunol Rev. 2015; 265(1): 112-129.
66. Khader SA, Gaffen SL, Kolls JK. Th17 cells at the crossroads of innate and adaptive immunity against infectious diseases at the mucosa. Mucosal Immunol. 2009; 2(5): 403.
67. Pickard JM, Zeng MY, Caruso R, Núñez G. Gut microbiota: Role in pathogen colonization, immune responses, and inflammatory disease. Immunol Rev. 2017; 279(1): 70.
68. Wu T, Xu F, Su C, Li H, Lv N, Liu Y, et al. Alterations in the Gut Microbiome and Cecal Metabolome During Klebsiella pneumoniae-Induced Pneumosepsis. Front Immunol. 2020; 11: 1331.
69. Tsiaoussis GI, Assimakopoulos SF, Tsamandas AC, Triantos CK, Thomopoulos KC. Intestinal barrier dysfunction in cirrhosis: Current concepts in pathophysiology and clinical implications. World J Hepatol. 2015; 7(17): 2058.
70. Papp M, Norman GL, Vitalis Z, Tornai I, Altorjay I, Foldi I, et al. Presence of anti-microbial antibodies in liver cirrhosis--a tell-tale sign of compromised immunity? PLoS One. 2010; 5(9): e12957.
71. Giannelli V, Di Gregorio V, Iebba V, Giusto M, Schippa S, Merli M, Thalheimer U. Microbiota and the gut-liver axis: bacterial translocation, inflammation and infection in cirrhosis. World J Gastroenterol. 2014; 20(45): 16795.
72. Cabinian A, Sinsimer D, Tang M, Jang Y, Choi B, Laouar Y, Laouar A. Gut symbiotic microbes imprint intestinal immune cells with the innate receptor SLAMF4 which contributes to gut immune protection against enteric pathogens. Gut. 2018; 67(5): 847.
73. Wang C, Li Q, Ren J. Microbiota-Immune Interaction in the Pathogenesis of Gut-Derived Infection. Front Immunol. 2019; 10: 1873.
74. Sencio V, Machado MG, Trottein F. The lung-gut axis during viral respiratory infections: the impact of gut dysbiosis on secondary disease outcomes. Mucosal Immunol. 2021; 14(2): 296.
75. George S, Aguilera X, Gallardo P, Farfán M, Lucero Y, Torres JP, et al. Bacterial Gut Microbiota and Infections During Early Childhood. Front Microbiol. 2022; 12: 793050.
76. Khan I, Bai Y, Zha L, Ullah N, Ullah H, Shah SRH, et al. Mechanism of the Gut Microbiota Colonization Resistance and Enteric Pathogen Infection. Front Cell Infect Microbiol. 2021; 11: 716299.
77. Ducarmon QR, Zwittink RD, Hornung BVH, van Schaik W, Young VB, Kuijper EJ. Gut Microbiota and Colonization Resistance against Bacterial Enteric Infection. Microbiol Mol Biol Rev. 2019; 83(3): e00007.
78. Raineri EJM, Altulea D, van Dijl JM. Staphylococcal trafficking and infection-from 'nose to gut' and back. FEMS Microbiol Rev. 2022; 46(1): fuab041.
79. Martín-Núñez GM, Cornejo-Pareja I, Clemente-Postigo M, Tinahones FJ, Moreno-Indias I. Helicobacter pylori Eradication Therapy Affect the Gut Microbiota and Ghrelin Levels. Front Med. 2021; 8: 712908.
80. Siggins MK, Sriskandan S. Bacterial Lymphatic Metastasis in Infection and Immunity. Cells. 2021; 11(1): 33.
81. Paczosa MK, Mecsas J. Klebsiella pneumoniae: Going on the Offense with a Strong Defense. Microbiol Mol Biol Rev. 2016; 80(3): 629.
82. Fattinger SA, Böck D, Di Martino ML, Deuring S, Samperio Ventayol P, Ek V, et al. Salmonella Typhimurium discreet-invasion of the murine gut absorptive epithelium. PLoS Pathog. 2020; 16(5): e1008503.
83. Yap YA, McLeod KH, McKenzie CI, Gavin PG, Davalos-Salas M, Richards JL, et al. An acetate-yielding diet imprints an immune and anti-microbial programme against enteric infection. Clin Transl Immunology. 2021; 10(1): e1233.
84. Fukui H. Role of Gut Dysbiosis in Liver Diseases: What Have We Learned So Far? Diseases. 2019; 7(4): 58.
85. Villarino NF, LeCleir GR, Denny JE, Dearth SP, Harding CL, Sloan SS, et al. Composition of the gut microbiota modulates the severity of malaria. Proc Natl Acad Sci USA. 2016; 113(8): 2235.
86. Rajak P, Roy S, Dutta M, Podder S, Sarkar S, Ganguly A, et al. Understanding the cross-talk between mediators of infertility and COVID-19. Reprod Biol. 2021; 21(4): 100559.
87. Crane MJ, Lee KM, FitzGerald ES, Jamieson AM. Surviving Deadly Lung Infections: Innate Host Tolerance Mechanisms in the Pulmonary System. Front Immunol. 2018; 9: 1421.
88. Zapater P, González-Navajas JM, Such J, Francés R. Immunomodulating effects of antibiotics used in the prophylaxis of bacterial infections in advanced cirrhosis. World J Gastroenterol. 2015; 21(41): 11493.
89. Sumner SE, Markley RL, Kirimanjeswara GS. Role of Selenoproteins in Bacterial Pathogenesis. Biol Trace Elem Res. 2019; 192(1): 69.
90. Mnich ME, van Dalen R, van Sorge NM. C-Type Lectin Receptors in Host Defense Against Bacterial Pathogens. Front Cell Infect Microbiol. 2020; 10: 309.
91. Riva A, Patel V, Kurioka A, Jeffery HC, Wright G, Tarff S, et al. Mucosa-associated invariant T cells link intestinal immunity with antibacterial immune defects in alcoholic liver disease. Gut. 2018; 67(5): 918.
92. Bergstrom KS, Kissoon-Singh V, Gibson DL, Ma C, Montero M, Sham HP, et al. Muc2 protects against lethal infectious colitis by disassociating pathogenic and commensal bacteria from the colonic mucosa. PLoS Pathog. 2010; 6(5): e1000902.
93. Steigedal M, Marstad A, Haug M, Damås JK, Strong RK, Roberts PL, et al. Lipocalin 2 imparts selective pressure on bacterial growth in the bladder and is elevated in women with urinary tract infection. J Immunol. 2014; 193(12): 6081.
94. Mao T, Su CW, Ji Q, Chen CY, Wang R, Vijaya Kumar D, et al. Hyaluronan-induced alterations of the gut microbiome protects mice against Citrobacter rodentium infection and intestinal inflammation. Gut Microbes. 2021; 13(1): 1972757.
95. Houtz P, Bonfini A, Liu X, Revah J, Guillou A, Poidevin M, et al. Hippo, TGF-β, and Src-MAPK pathways regulate transcription of the upd3 cytokine in Drosophila enterocytes upon bacterial infection. PLoS Genet. 2017; 13(11): e1007091.
96. Peng M, Tabashsum Z, Patel P, Bernhardt C, Biswas C, Meng J, Biswas D. Prevention of enteric bacterial infections and modulation of gut microbiota with conjugated linoleic acids producing Lactobacillus in mice. Gut Microbes. 2020; 11(3): 433.
97. Mirzaei R, Sabokroo N, Ahmadyousefi Y, Motamedi H, Karampoor S. Immunometabolism in biofilm infection: lessons from cancer. Mol Med. 2022; 28(1): 10.
98. Cooling L. Blood Groups in Infection and Host Susceptibility. Clin Microbiol Rev. 2015; 28(3): 801-870.
99. Duval M, Cossart P, Lebreton A. Mammalian microRNAs and long noncoding RNAs in the host-bacterial pathogen crosstalk. Semin Cell Dev Biol. 2017; 65: 11.
100. Zhou X, Li X, Wu M. miRNAs reshape immunity and inflammatory responses in bacterial infection. Signal Transduct Target Ther. 2018;3: 14.
101. Hakansson AP, Orihuela CJ, Bogaert D. Bacterial-Host Interactions: Physiology and Pathophysiology of Respiratory Infection. Physiol Rev. 2018; 98(2): 781.
102. Hodgins DC, Yuan L, Parreño V, Corbeil LB, Saif LJ. Mucosal Veterinary Vaccines: Comparative Vaccinology. Mucosal Immunol. 2015; 1337.
103. Lavelle EC, Ward RW. Mucosal vaccines - fortifying the frontiers. Nat Rev Immunol. 2022; 22(4): 236-250.
104. Hwang I, Park K, Kim TE, Kwon Y, Lee YK. COVID-19 vaccine safety monitoring in the Republic of Korea: February 26, 2021 to April 30, 2021. Osong Public Health Res Perspect. 2021; 12(4): 264.
105. Broadbent AJ, Boonnak K, Subbarao K. Respiratory Virus Vaccines. Mucosal Immunol. 2015; 1129-1170.
106. Curtiss R 3rd. Antigen Delivery System II: Development of Live Attenuated Bacterial Vectors. Mucosal Immunol. 2015; 1233.
107. Moody MA. Modulation of HIV-1 immunity by adjuvants. Curr Opin HIV AIDS. 2014; 9(3): 242.
108. Siefert AL, Caplan MJ, Fahmy TM. Artificial bacterial biomimetic nanoparticles synergize pathogen-associated molecular patterns for vaccine efficacy. Biomaterials. 2016; 97: 85.
109. Mason HS, Thuenemann E, Kiyono H, Kessans S, Matoba N, Mor T. Mucosal Vaccines from Plant Biotechnology. Mucosal Immunol. 2015; 1271.
110. Xu L, Tudor D, Bomsel M. The Protective HIV-1 Envelope gp41 Antigen P1 Acts as a Mucosal Adjuvant Stimulating the Innate Immunity. Front Immunol. 2021; 11: 599278.
111. Li Z, Khanna M, Grimley SL, Ellenberg P, Gonelli CA, Lee WS, et al. Mucosal IL-4R antagonist HIV vaccination with SOSIP-gp140 booster can induce high-quality cytotoxic CD4+/CD8+ T cells and humoral responses in macaques. Sci Rep. 2020; 10(1): 22077.
112. Parker EP, Molodecky NA, Pons-Salort M, O'Reilly KM, Grassly NC. Impact of inactivated poliovirus vaccine on mucosal immunity: implications for the polio eradication endgame. Expert Rev Vaccines. 2015; 14(8): 1113.
113. Connor RI, Brickley EB, Wieland-Alter WF, Ackerman ME, Weiner JA, Modlin JF, et al. Mucosal immunity to poliovirus. Mucosal Immunol. 2022; 15(1): 1-9.
114. Wang T, Wei F, Liu J. Emerging Role of Mucosal Vaccine in Preventing Infection with Avian Influenza A Viruses. Viruses. 2020; 12(8): 862.
How to Cite
Upadhyay, R. Mucosal Membranes, Their Interactions to Microbial Infections and Immune Susceptibility in Human Hosts. European Journal of Biological Research 2023, 13, 41-70.
Review Articles