In silico exploration of Lycoris alkaloids as potential inhibitors of SARS-CoV-2 main protease (Mpro)

  • Fredrick Mutie Musila School of Biological and Life Sciences, Technical University of Kenya, PO Box 52428-00200, Nairobi, Kenya https://orcid.org/0000-0002-6219-8150
  • Grace W Gitau School of Biological and Life Sciences, Technical University of Kenya, PO Box 52428-00200, Nairobi, Kenya
  • Magrate M. Kaigongi Kenya Forestry Research Institute, PO Box 20412-00200, Nairobi, Kenya https://orcid.org/0000-0002-4318-6867
  • Dickson B. Kinyanyi School of Biological and Life Sciences, Technical University of Kenya, PO Box 52428-00200, Nairobi, Kenya https://orcid.org/0000-0001-9147-3847
  • Jeremiah M. Mulu Department of Chemistry, College of Biological and Physical Sciences, University of Nairobi, PO Box 30197-00100, Nairobi, Kenya
  • Joseph M. Nguta Department of Public Health, Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Nairobi, PO Box 29053-00625, Nairobi, Kenya https://orcid.org/0000-0002-4591-9999
Keywords: Lycoris alkaloids, SARS-CoV-2 Mpro, Molecular docking, ADMET screening, Molecular dynamic simulations, Ligand-receptor interactions

Abstract

Coronavirus disease 2019 (COVID-19) is a pandemic whose adverse effects have been felt all over the world. As of August 2022, reports indicated that over 500 million people in the world had been infected and the number of rising deaths from the disease were slightly above 6.4 million. New variants of the causative agent, SARS-CoV-2 are emanating now and then and some are more efficacious and harder to manage. SARS-CoV-2 main protease (Mpro) has essential functions in viral gene expression and replication through proteolytic cleavage of polyproteins. Search for SARS-CoV-2 Mpro inhibitors is a vital step in the treatment and management of COVID-19. In this study, we investigated whether alkaloids with antiviral and myriad other bioactivities from the genus Lycoris can act as SARS-CoV-2 Mpro inhibitors. We conducted a computer-aided drug design study through screening optimal ligands for SARS-CoV-2 Mpro from a list of over 150 Lycoris alkaloids created from online databases such as ChEMBL, PubChem, ChemSpider, and published journal papers. The In silico study involved molecular docking of Lycoris alkaloids to SARS-CoV-2 Mpro active site, absorption, distribution, metabolism, elimination and toxicity (ADMET) screening and finally molecular dynamic (MD) simulations of the most promising ligand-SARS-CoV-2 Mpro complexes. The study identified 3,11-dimethoxy-lycoramine, narwedine, O-demethyllycoramine and epilycoramine as drug-like and lead-like Lycoris alkaloids with favorable ADMET properties and are very likely to have an inhibition activity on SARS-CoV-2 Mpro and may become potential drug candidates.

DOI: http://dx.doi.org/10.5281/zenodo.7041808

Downloads

Download data is not yet available.

References

1. Paules CI, Marston HD, Fauci AS. Coronavirus infections - more than just the common cold. JAMA. 2020;323(8):707-8.
2. WHO. COVID-19 Weekly Epidemiological Update 35. World Heal Organ. 2021:1-3. Available from: https://www.who.int/docs/default-source/coronaviruse/situation-reports/weekly_epidemiological_update_22.pdf
3. Zhou P, Yang X-L, Wang X-G, Hu B, Zhang L, Zhang W, et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature. 2020;579(7798):270-3.
4. Chan JF-W, Kok K-H, Zhu Z, Chu H, To KK-W, Yuan S, et al. Genomic characterization of the 2019 novel human-pathogenic coronavirus isolated from a patient with atypical pneumonia after visiting Wuhan. Emerg Microbes Infect. 2020;9(1):221-36.
5. Nicola M, Alsafi Z, Sohrabi C, Kerwan A, Al-Jabir A, Iosifidis C, et al. The socio-economic implications of the coronavirus pandemic (COVID-19): A review. Int J Surg. 2020;78:185-93.
6. Wouters OJ, Shadlen KC, Salcher-Konrad M, Pollard AJ, Larson HJ, Teerawattananon Y, et al. Challenges in ensuring global access to COVID-19 vaccines: production, affordability, allocation, and deployment. Lancet. 2021;397(10278):P1023-34.
7. Forni G, Mantovani A. COVID-19 vaccines: where we stand and challenges ahead. Cell Death Differ. 2021;28(2):626-39.
8. Perlman S, Netland J. Coronaviruses post-SARS: update on replication and pathogenesis. Nat Rev Microbiol. 2009;7(6):439-50.
9. Jin Z, Du X, Xu Y, Deng Y, Liu M, Zhao Y, et al. Structure of M pro from SARS-CoV-2 and discovery of its inhibitors. Nature. 2020;582(7811):289-93.
10. Ullrich S, Nitsche C. The SARS-CoV-2 main protease as drug target. Bioorg Med Chem Lett. 2020;127377.
11. Wu A, Peng Y, Huang B, Ding X, Wang X, Niu P, et al. Genome composition and divergence of the novel coronavirus (2019-nCoV) originating in China. Cell Host Microbe. 2020;27(3):325-8.
12. Du Q-S, Wang S-Q, Zhu Y, Wei D-Q, Guo H, Sirois S, et al. Polyprotein cleavage mechanism of SARS CoV Mpro and chemical modification of the octapeptide. Peptides. 2004;25(11):1857-64.
13. Agbowuro AA, Huston WM, Gamble AB, Tyndall JDA. Proteases and protease inhibitors in infectious diseases. Med Res Rev. 2018;38(4):1295-331.
14. Zhang L, Lin D, Sun X, Curth U, Drosten C, Sauerhering L, et al. Crystal structure of SARS-CoV-2 main protease provides a basis for design of improved α-ketoamide inhibitors. Science. 2020;368(6489):409-12.
15. Chen YW, Yiu C-PB, Wong K-Y. Prediction of the SARS-CoV-2 (2019-nCoV) 3C-like protease (3CL pro) structure: virtual screening reveals velpatasvir, ledipasvir, and other drug repurposing candidates. F1000Research. 2020;9.
16. Zhang Y-N, Zhang Q-Y, Li X-D, Xiong J, Xiao S-Q, Wang Z, et al. Gemcitabine, lycorine and oxysophoridine inhibit novel coronavirus (SARS-CoV-2) in cell culture. Emerg Microbes Infect. 2020;9(1):1170-3.
17. Cahlíková L, Breiterová K, Opletal L. Chemistry and biological activity of alkaloids from the genus Lycoris (Amaryllidaceae). Molecules. 2020;25(20):4797.
18. Chen G-L, Tian Y-Q, Wu J-L, Li N, Guo M-Q. Antiproliferative activities of Amaryllidaceae alkaloids from Lycoris radiata targeting DNA topoisomerase I. Sci Rep. 2016;6(1):1-10.
19. Feng T, Wang Y, Su J, Li Y, Cai X, Luo X. Amaryllidaceae alkaloids from Lycoris radiata. Helv Chim Acta. 2011;94(1):178-83.
20. Hao B, Shen S-F, Zhao Q-J. Cytotoxic and antimalarial amaryllidaceae alkaloids from the bulbs of Lycoris radiata. Molecules. 2013;18(3):2458-68.
21. Liu Z-M, Huang X-Y, Cui M-R, Zhang X-D, Chen Z, Yang B-S, et al. Amaryllidaceae alkaloids from the bulbs of Lycoris radiata with cytotoxic and anti-inflammatory activities. Fitoterapia. 2015;101:188-93.
22. Toriizuka Y, Kinoshita E, Kogure N, Kitajima M, Ishiyama A, Otoguro K, et al. New lycorine-type alkaloid from Lycoris traubii and evaluation of antitrypanosomal and antimalarial activities of lycorine derivatives. Bioorg Med Chem. 2008;16(24):10182-9.
23. Jin A, Li X, Zhu Y-Y, Yu H-Y, Pi H-F, Zhang P, et al. Four new compounds from the bulbs of Lycoris aurea with neuroprotective effects against CoCl 2 and H 2 O 2-induced SH-SY5Y cell injuries. Arch Pharm Res. 2014;37(3):315-23.
24. Zhu Y-Y, Li X, Yu H-Y, Xiong Y-F, Zhang P, Pi H-F, et al. Alkaloids from the bulbs of Lycoris longituba and their neuroprotective and acetylcholinesterase inhibitory activities. Arch Pharm Res. 2015;38(5):604-13.
25. Guo Y, Pigni NB, Zheng Y, de Andrade JP, Torras-Claveria L, de Souza Borges W, et al. Analysis of bioactive Amaryllidaceae alkaloid profiles in Lycoris species by GC-MS. Nat Prod Commun. 2014;9(8):1934578X1400900806.
26. Tian Y, Zhang C, Guo M. Comparative analysis of Amaryllidaceae alkaloids from three Lycoris species. Molecules. 2015;20(12):21854-69.
27. Sun Z-F, Mu S-Z, Ge Y-H, Hao X-J. Alkaloid type analysis of Lycoris radiata and Lycoris aurea using GC-MS method. J Mt Agric Biol. 2012;2:22.
28. Li A, Du Z, Liao M, Feng Y, Ruan H, Jiang H. Discovery and characterisation of lycorine‐type alkaloids in Lycoris spp.(Amaryllidaceae) using UHPLC‐QTOF‐MS. Phytochem Anal. 2019;30(3):268-77.
29. Cao Z, Yang P, Zhou Q. Multiple biological functions and pharmacological effects of lycorine. Sci China Chem. 2013;56(10):1382-91.
30. Kim S, Thiessen PA, Bolton EE, Chen J, Fu G, Gindulyte A, et al. PubChem substance and compound databases. Nucleic Acids Res. 2016;44(D1):D1202-13.
31. Gaulton A, Hersey A, Nowotka M, Bento AP, Chambers J, Mendez D, et al. The ChEMBL database in 2017. Nucleic Acids Res. 2017;45(D1):D945-54.
32. Mendelsohn LD. ChemDraw 8 ultra, windows and macintosh versions. J Chem Inf Comput Sci. 2004;44(6):2225-6.
33. Biovia DS. Discovery studio visualizer. San Diego, CA, USA. 2017;936.
34. Baell JB, Holloway GA. New substructure filters for removal of pan assay interference compounds (PAINS) from screening libraries and for their exclusion in bioassays. J Med Chem. 2010;53(7):2719-40.
35. Baell JB, Ferrins L, Falk H, Nikolakopoulos G. PAINS: Relevance to tool compound discovery and fragment-based screening. Aust J Chem. 2013;66(12):1483-94.
36. Brenk R, Schipani A, James D, Krasowski A, Gilbert IH, Frearson J, et al. Lessons learnt from assembling screening libraries for drug discovery for neglected diseases. ChemMedChem. 2008;3(3):435.
37. Daina A, Michielin O, Zoete V. SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci Rep. 2017;7(1):1-13.
38. Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, et al. UCSF Chimera—a visualization system for exploratory research and analysis. J Comput Chem. 2004;25(13):1605-12.
39. Dallakyan S, Olson AJ. Small-molecule library screening by docking with PyRx. In: Chemical biology. Springer; 2015. p. 243-50.
40. Cheng F, Li W, Zhou Y, Shen J, Wu Z, Liu G, et al. admetSAR: a comprehensive source and free tool for assessment of chemical ADMET properties. ACS Publications; 2012.
41. Kumari A, Mittal L, Srivastava M, Asthana S. Binding mode characterization of 13b in the monomeric and dimeric states of SARS-CoV-2 main protease using molecular dynamics simulations. J Biomol Struct Dyn. 2021;1-19.
42. Schüttelkopf AW, Van Aalten DMF. PRODRG: a tool for high-throughput crystallography of protein-ligand complexes. Acta Crystallogr Sect D Biol Crystallogr. 2004;60(8):1355-63.
43. Ren P, Shang W, Yin W, Ge H, Wang L, Zhang X, et al. A multi-targeting drug design strategy for identifying potent anti-SARS-CoV-2 inhibitors. Acta Pharmacol Sin. 2021;1-11.
44. Wang H, Wang Y, Zhao F, Huang Q, Jinjin XU, Lijuan MA, et al. Benzylphenethylamine alkaloids from the bulbs and flowers of Lycoris radiata. Chinese Herb Med. 2011;3(1):60-3.
45. Yin S, Qiu Y, Jin C, Wang R, Wu S, Liu H, et al. 7‐Deoxynarciclasine shows promising antitumor efficacy by targeting Akt against hepatocellular carcinoma. Int J cancer. 2019;145(12):3334-46.
46. Ang S, Liu X-M, Huang X-J, Zhang D-M, Zhang W, Wang L, et al. Four new Amaryllidaceae alkaloids from Lycoris radiata and their cytotoxicity. Planta Med. 2015;81(18):1712-8.
47. HU Y, MU S, YAN C, SUN Z, ZHANG J, HAO X. Isolation and identification of alkaloids of bulbs of Lycoris radiata Herb. produced in Guizhou province. J Shenyang Pharm Univ. 2013;
48. Mu H, Wang R, Li X, Jiang Y, Peng F, Xia B. Alkaloid accumulation in different parts and ages of Lycoris chinensis. Zeitschrift für Naturforsch C. 2010;65(7-8):458-62.
49. Yang D-Q, Chen Z-R, Chen D-Z, Hao X-J, Li S-L. Anti-TMV effects of Amaryllidaceae alkaloids isolated from the bulbs of Lycoris radiata and Lycoricidine derivatives. Nat Products Bioprospect. 2018;8(3):189-97.
50. Huan W, Yue-hu W, Li-juan C, Chun-lin L. Research Progress of Alkaloids from Lycoris. Nat Prod Res Dev. 2012;24(5):1102-6.
51. Shen C-Y, Xu X-L, Yang L-J, Jiang J-G. Identification of narciclasine from Lycoris radiata (L’Her.) Herb. and its inhibitory effect on LPS-induced inflammatory responses in macrophages. Food Chem Toxicol. 2019;125:605-13.
52. Jianxin SZMSZ, Xiaojiang YCHLH. Chemical constituents of Lycoris aurea from Guizhou province. J North Pharm. 2013;
53. Chen D, Oezguen N, Urvil P, Ferguson C, Dann SM, Savidge TC. Regulation of protein-ligand binding affinity by hydrogen bond pairing. Sci Adv. 2016;2(3):e1501240.
54. Ramírez D, Caballero J. Is it reliable to take the molecular docking top scoring position as the best solution without considering available structural data? Molecules. 2018;23(5):1038.
55. Yoshino R, Yasuo N, Sekijima M. Identification of key interactions between SARS-CoV-2 main protease and inhibitor drug candidates. Sci Rep. 2020;10(1):1-8.
56. Lipinski CA, Lombardo F, Dominy BW, Feeney PJ. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev. 1997;23(1-3):3-25.
57. Ghose AK, Viswanadhan VN, Wendoloski JJ. A knowledge-based approach in designing combinatorial or medicinal chemistry libraries for drug discovery. 1. A qualitative and quantitative characterization of known drug databases. J Comb Chem. 1999;1(1):55-68.
58. Veber DF, Johnson SR, Cheng H-Y, Smith BR, Ward KW, Kopple KD. Molecular properties that influence the oral bioavailability of drug candidates. J Med Chem. 2002;45(12):2615-23.
59. Egan WJ, Merz KM, Baldwin JJ. Prediction of drug absorption using multivariate statistics. J Med Chem. 2000;43(21):3867-77.
60. Muegge I, Heald SL, Brittelli D. Simple selection criteria for drug-like chemical matter. J Med Chem. 2001;44(12):1841-6.
61. Jain KK. Nanobiotechnology-based strategies for crossing the blood-brain barrier. Nanomedicine. 2012;7(8):1225-33.
62. Finch A, Pillans P. P-glycoprotein and its role in drug-drug interactions. Aust Prescr. 2014;37(4):137-9.
63. Huwyler J, Wright MB, Gutmann H, Drewe J. Induction of cytochrome P450 3A4 and P-glycoprotein by the isoxazolyl-penicillin antibiotic flucloxacillin. Curr Drug Metab. 2006;7(2):119-26.
64. Davis TP, Sanchez-Covarubias L, Tome ME. P-glycoprotein trafficking as a therapeutic target to optimize CNS drug delivery. Adv Pharmacol. 2014;71:25-44.
65. Fink-Gremmels J. Implications of hepatic cytochrome P450-related biotransformation processes in veterinary sciences. Eur J Pharmacol. 2008;585(2-3):502-9.
66. Inglese C, Grazia Perrone M, Berardi F, Perrone R, Antonio Colabufo N. Modulation and absorption of xenobiotics: the synergistic role of CYP450 and P-gp activities in cancer and neurodegenerative disorders. Curr Drug Metab. 2011;12(8):702-12.
67. Westervelt P, Cho K, Bright DR, Kisor DF. Drug-gene interactions: inherent variability in drug maintenance dose requirements. Pharm Ther. 2014;39(9):630.
68. Zhou S, Chan SY, Goh BC, Chan E, Duan W, Huang M, et al. Mechanism-based inhibition of cytochrome P450 3A4 by therapeutic drugs. Clin Pharmacokinet. 2005;44(3):279-304.
69. Lynch T, Price AL. The effect of cytochrome P450 metabolism on drug response, interactions, and adverse effects. Am Fam Physician. 2007;76(3):391-6.
70. Müller F, König J, Hoier E, Mandery K, Fromm MF. Role of organic cation transporter OCT2 and multidrug and toxin extrusion proteins MATE1 and MATE2-K for transport and drug interactions of the antiviral lamivudine. Biochem Pharmacol. 2013;86(6):808-15.
71. Yonezawa A, Inui K. Importance of the multidrug and toxin extrusion MATE/SLC47A family to pharmacokinetics, pharmacodynamics/toxicodynamics and pharmacogenomics. Br J Pharmacol. 2011;164(7):1817-25.
72. Szabo M, Veres Z, Baranyai Z, Jakab F, Jemnitz K. Comparison of human hepatoma HepaRG cells with human and rat hepatocytes in uptake transport assays in order to predict a risk of drug induced hepatotoxicity. PLoS One. 2013;8(3):e59432.
73. Clarke JD, Cherrington NJ. Genetics or environment in drug transport: the case of organic anion transporting polypeptides and adverse drug reactions. Expert Opin Drug Metab Toxicol. 2012;8(3):349-60.
74. Shitara Y. Clinical importance of OATP1B1 and OATP1B3 in drug-drug interactions. Drug Metab Pharmacokinet. 2010;1101310150.
75. Gozalpour E, Greupink R, Wortelboer HM, Bilos A, Schreurs M, Russel FGM, et al. Interaction of digitalis-like compounds with liver uptake transporters NTCP, OATP1B1, and OATP1B3. Mol Pharm. 2014;11(6):1844-55.
76. Koepsell H, Lips K, Volk C. Polyspecific organic cation transporters: structure, function, physiological roles, and biopharmaceutical implications. Pharm Res. 2007;24(7):1227-51.
77. Ito K, Suzuki H, Horie T, Sugiyama Y. Apical/basolateral surface expression of drug transporters and its role in vectorial drug transport. Pharm Res. 2005;22(10):1559-77.
78. Shikata E, Yamamoto R, Takane H, Shigemasa C, Ikeda T, Otsubo K, et al. Human organic cation transporter (OCT1 and OCT2) gene polymorphisms and therapeutic effects of metformin. J Hum Genet. 2007;52(2):117-22.
79. Gatehouse D. Bacterial mutagenicity assays: test methods. In: Genetic Toxicology. Springer; 2012. p. 21-34.
80. Bhatia S, Schultz T, Roberts D, Shen J, Kromidas L, Api AM. Comparison of cramer classification between toxtree, the OECD QSAR toolbox and expert judgment. Regul Toxicol Pharmacol. 2015;71(1):52-62.
81. Cramer GM, Ford RA, Hall RL. Estimation of toxic hazard - a decision tree approach. Food Cosmet Toxicol. 1976;16(3):255-76.
82. Perissinotti LL, Guo J, De Biase PM, Clancy CE, Duff HJ, Noskov SY. Kinetic model for NS1643 drug activation of WT and L529I variants of Kv11. 1 (hERG1) potassium channel. Biophys J. 2015;108(6):1414-24.
83. Lamothe SM, Guo J, Li W, Yang T, Zhang S. The human ether-a-go-go-related gene (hERG) potassium channel represents an unusual target for protease-mediated damage. J Biol Chem. 2016;291(39):20387-401.
84. Emam AN, Girgis E, Khalil WKB, Mohamed MB. Toxicity of plasmonic nanomaterials and their hybrid nanocomposites. In: Advances in molecular toxicology. Elsevier; 2014. p. 173-202.
85. Kuzmanic A, Zagrovic B. Determination of ensemble-average pairwise root mean-square deviation from experimental B-factors. Biophys J. 2010;98(5):861-71.
86. Carugo O, Pongor S. A normalized root‐mean‐spuare distance for comparing protein three‐dimensional structures. Protein Sci. 2001;10(7):1470-3.
87. Krippahl L, Moura JJ, Palma PN. Modeling protein complexes with BiGGER. Proteins Struct Funct Bioinforma. 2003;52(1):19-23.
88. Kirchmair J, Markt P, Distinto S, Wolber G, Langer T. Evaluation of the performance of 3D virtual screening protocols: RMSD comparisons, enrichment assessments, and decoy selection—what can we learn from earlier mistakes? J Comput Aided Mol Des. 2008;22(3):213-28.
89. Smith GR, Sternberg MJE, Bates PA. The relationship between the flexibility of proteins and their conformational states on forming protein-protein complexes with an application to protein-protein docking. J Mol Biol. 2005;347(5):1077-101.
90. Aouidate A, Ghaleb A, Chtita S, Aarjane M, Ousaa A, Maghat H, et al. Identification of a novel dual-target scaffold for 3CLpro and RdRp proteins of SARS-CoV-2 using 3D-similarity search, molecular docking, molecular dynamics and ADMET evaluation. J Biomol Struct Dyn. 2020;1-14.
91. Lobanov MY, Bogatyreva NS, Galzitskaya O V. Radius of gyration as an indicator of protein structure compactness. Mol Biol. 2008;42(4):623-8.
92. Durham E, Dorr B, Woetzel N, Staritzbichler R, Meiler J. Solvent accessible surface area approximations for rapid and accurate protein structure prediction. J Mol Model. 2009;15(9):1093-108.
93. Wang J, Wang W, Huo S, Lee M, Kollman PA. Solvation model based on weighted solvent accessible surface area. J Phys Chem B. 2001;105(21):5055-67.
94. Van Norman GA. Drugs, devices, and the FDA: part 1: an overview of approval processes for drugs. JACC Basic to Transl Sci. 2016;1(3):170-9.
95. Surabhi S, Singh BK. Computer aided drug design: an overview. J Drug Deliv Ther. 2018;8(5):504-9.
96. Zoete V, Grosdidier A, Michielin O. Docking, virtual high throughput screening and in silico fragment‐based drug design. J Cell Mol Med. 2009;13(2):238-48.
97. Wadood A, Ahmed N, Shah L, Ahmad A, Hassan H, Shams S. In-silico drug design: An approach which revolutionarised the drug discovery process. OA Drug Des Deliv. 2013;1(1):3.
98. Lavecchia A, Cerchia C. In silico methods to address polypharmacology: current status, applications and future perspectives. Drug Discov Today. 2016;21(2):288-98.
99. Lavecchia A, Di Giovanni C. Virtual screening strategies in drug discovery: a critical review. Curr Med Chem. 2013;20(23):2839-60.
100. Casciuc I, Horvath D, Gryniukova A, Tolmachova KA, Vasylchenko O V, Borysko P, et al. Pros and cons of virtual screening based on public “Big Data”: In silico mining for new bromodomain inhibitors. Eur J Med Chem. 2019;165:258-72.
101. Dubey KD, Ojha RP. Molecular dynamics simulations: Applicability and scopes in computational biochemistry. Nanosci Comput Chem Res Prog. 2013;371.
Published
2022-09-01
How to Cite
(1)
Musila, F.; Gitau, G.; Kaigongi, M.; Kinyanyi, D.; Mulu, J.; Nguta, J. In Silico Exploration of Lycoris Alkaloids As Potential Inhibitors of SARS-CoV-2 Main Protease (Mpro). European Journal of Biological Research 2022, 12, 238-261.
Section
Research Articles