Natural flavonoids: classification, potential role, and application of flavonoid analogues

  • Katarzyna Małgorzata Brodowska Institute of General Food Chemistry, Faculty of Biotechnology and Food Sciences, Łódź University of Technology, Stefanowskiego 4/10, 90-924 Łódź, Poland
Keywords: Flavonoids, Flavonoid analogues, Application, Properties, Medicine


Nowadays, it is assumed that natural flavonoids occurring in fruits and plant derived-foods are relevant, not only for organoleptic properties or technological reasons, but also because of their potential health-promoting effects, as suggested by the available experimental and epidemiological studies. This large group of phenolic plant constituents can be divided into several classes: flavanols, flavanones, flavonols, isoflavones, flavones and anthocyanins depending on the differences in their structures.The beneficial biological effects are also attributed to flavonoid analogues and their metal complexes. These compounds are characterized by antioxidant, pharmacological, anti-inflammatory, anti-allergic, antiviral, anticarcinogenic, as well as therapeutic and cytotoxic properties. Furthermore, they possess a wide range of applications including various fields of industry.



Download data is not yet available.


1. McCue P, Shetty K. Role of carbohydrate-enzymes in phenolic antioxidants mobilization from whole soybean fermented with R. oligosporus. Food Biotechnol. 2003;1:27-37.
2. Szajdek A, Borowska J. Antioxidant properties of food of plant origin [in Polish]. ŻNTJ. 2004; 4: 5-28.
3. Vinson J, Dabbagh Y. Tea phenols: antioxidant effectiveness of teas, tea components, tea fractions and their binding with lipoproteins. Nutr Res. 1998; 6: 1067-1075.
4. Aherne SA, O’Brien NM. Dietary flavonols: chemistry, food content, and metabolism. Nutr. 2002;18(1):75-81.
5. Hollman P, Hertog M, Katan M. Analysis and health effects of flavonoids. Food Chem. 1996; 57: 43-46.
6. Mitek M, Gasik A. Polyphenols in food. The impact on organolepticcharacteristics of food [in Polish]. Przem Spoż. 2009; 5: 34-39.
7. Ostrowska J, Skrzydlewska E. Biological activity of flavonoids [in Polish]. Post Fitoter. 2005; 3-4: 71-79.
8. Rosicka-Kaczmarek J. Polyphenols as natural antioxidants in foods [in Polish]. Przegląd Piekar Cukiern. 2004; 6: 12-16.
9. Strissel PL, Strick R. Multiple effects of Bioflavonoids on gene regulation, cell proliferation and apoptosis: Natural compounds move into the lime light of cancer research. Leukemia Res. 2005; 29: 859-861.
10. Kumar S, Dhar DN, Saxena PN. Applications of metal complexes of Schiff bases - a review. J Sci Ind Res. 2009; 68: 181-187.
11. Erlund I. Review of the flavonoids quercetin, hesperetin, and naringenin. Dietary sources, bioactivities, bioavailability, and epidemiology. Nutr Res. 2004;24:851-874.
12. Symonowicz M, Kolanek M. Flavonoids and their properties to form chelate complexes. Biotechnol Food Sci. 2012; 76(1): 35-41.
13. Majewska M, Czeczot H. Flavonoids in prevention and therapy [in Polish]. Farm Pol. 2009; 65(5): 369-377.
14. de Pascual-Teresa S, Moreno DA, Garcia-Viguera C. Flavanols and anthocyanins in cardiovascular health: a review of current evidence. Int J Mol Sci. 2010; 11: 1679-1703.
15. Maatta-Riihinen KR, Kahkonen MP, Torronen AR, Heinonen IM. Catechins and procyanidins in berries of Vaccinium species and their antioxidant activity. J Agric Food Chem. 2005; 53: 8485-8491.
16. American College of Cardiology. Flavanols key to potential chocolate benefits. Science Daily. [updated 2005 Sep 29; cited 2017 Feb 12].
17. Gramza A, Korczak J, Amarowicz R. Tea polyphenols - their antioxidant properties and biological activity - a review. Pol J Food Nutr Sci. 2005; 14/55(3): 219-235.
18. Vinson JA, Su X, Zubik L, Bose P. Phenol antioxidant quantity and quality in foods: fruits. J Agric Food Chem. 2001; 49(11): 5315-5321.
19. Rein D, Paglieroni TG, Wun T, Pearson DA, Schmitz HH, Gosselin R, et al. Cocoa inhibits platelet activation and function. Am J Clin Nutr. 2000; 72(1): 30-35.
20. Murphy KJ, Chronopoulos AK, Singh I, Francis MA, Moriarty H, Pike MJ, et al. Dietary flavanols and procyanidin oligomers from cocoa (Theobroma cacao) inhibit platelet function. Am J Clin Nutr. 2003; 77(6): 1466-1473.
21. Dulloo AG, Duret C, Rohrer D, Girardier L, Mensi N, Fathi M, et al. Efficacy of a green tea extract rich in catechin polyphenols and caffeine in increasing 24-h energy expenditure and fat oxidation in humans. Am J Clin Nutr. 1999; 70: 1040-1045.
22. Punyasiri PA, Abeysinghe IS, Kumar V, Treutter D, Duy D, Gosh C, et al. Flavonoid biosynthesis in the tea plant Camellia sinensis: properties of enzymes of the prominent epicatechin and catechin pathways. Arch Biochem Biophys. 2004; 431(1): 22-30.
23. Patel M. Health benefits of drinking tea. Diet & Nutrition. [updated 2012 Jan 17; cited 2017 Feb 12].
24. Kwon Y, Apostolidis E, Shetty K. Inhibitory potential of wine and tea against α-amylase and α-glucosidase for management of hyperglycemia linked to type 2 diabetes. J Food Biochem. 2008; 32(1): 15-31.
25. Igarashi K, Honma K, Yoshinari O, Nanjo F, Hara Y. Effects of dietary catechins on glucose tolerance, blood pressure and oxidative status in Goto-Kakizaki rats. J Nutr Sci Vitaminol. 2007; 53(6): 496-500.
26. de Pascual-Teresa S, Sanchez-Ballesta MT. Anthocyanins: from plant to health. Phytochem Rev. 2008; 7: 281-299.
27. Roy HJ, Lundy S, Eriksen C, Kalicki B. Anthocyanins. Pennigton Nutrition Series, 2009.
28. Wallace TC. Anthocyanins in cardiovascular disease. Adv Nutr. 2011; 2: 1-7.
29. de Pascual-Teresa S, Santos-Buelga C, Rivas-Gonzalo JC. Quantitative analysis of flavan-3-ols in Spanish foodstuffs and beverages. J Agric Food Chem. 2000; 48: 5331-5337.
30. Bagchi D, Sen CK, Bagchi M, Atalay M. Anti-angiogenic, antioxidant, and anti-carcinogenic properties of a novel anthocyanin-rich berry extract formula. Biochem. 2004; 69(1): 75-80.
31. Garcia-Alonso M, Minihane AM, Rimbach G, Rivas-Gonzalo JC, de Pascual-Teresa S. Red wine anthocyanins are rapidly absorbed in humans and affect monocyte chemoattractant protein 1 levels and antioxidant capacity of plasma. J Nutr Biochem. 2009; 20: 521-529.
32. Oak MH, Bedoui JE, Madeira SV, Chalupsky K, Schini-Kerth VB. Delphinidin and cyanidin inhibit PDGF(AB)-induced VEGF release in vascular smooth muscle cells by preventing activation of p38 MAPK and JNK. Br J Pharmacol. 2006; 149: 283-290.
33. Roy S, Khanna S, Alessio HM, Vider J, Bagchi D, Bagchi M, et al. Anti-angiogenic property of edible berries. Free Rad Res. 2002; 36: 1023-1031.
34. Xia M, Ling W, Zhu H, Wang Q, Ma J, Hou M, et al. Anthocyanin prevents CD40-activated proinflammatory signaling in endothelial cells by regulating cholesterol distribution. Arterioscler Thromb Vasc Biol. 2007; 27: 519-524.
35. Shim SH, Kim JM, Choi CY, Kim CY, Park KH. Ginkgo biloba extract and bilberry anthocyanins improve visual function in patients with normal tension glaucoma. J Med Food. 2012; 15(9): 818-823.
36. Iwasa H, Kameda H, Fukui N, Yoshida S, Hongo K, Mizobata T, et al. Bilberry anthocyanins neutralize the cytotoxicity of co-chaperoninGroES fibrillation intermediates. Biochem. 2013; 52(51): 9202-9211.
37. Khan MK, Huma Z, Dangles O. A comprehensive review on flavanones, the major citrus polyphenols. J Food Compos Anal. 2014; 33: 85-104.
38. Goulas V, Manganaris GA. Exploring the phytochemical content and the antioxidant potential of Citrus fruits grown in Cyprus. Food Chem. 2012; 131: 39-47.
39. Peterson J, Dwyer J, Beecher G, Bhagwat SA, Gebhardt SE, Haytowitz DB, et al. Flavanones in oranges, tangerines (mandarins), tangors, and tangelos: a compilation and review of the data from the analytical literature. J Food Compos Anal. 2006; 19: S66-S73.
40. di Majo D, Giammanco M, La Guardia M, Tripoli E, Giammanco S, Finotti E. Flavanones in Citrus fruit: structure-antioxidant activity relationships. Food Res Int. 2005; 38: 1161-1166.
41. Pobłocka-Olech L, Marcinkowska K, Krauze-Baranowska M. Naringenin and itsderivatives-flavanones with multidirectional pharmacological activity [in Polish]. Post Fitoter. 2006; 1: 16-22.
42. Cai Y, Mei S, Jie X, Luo Q, Corke H. Structure-radical scavenging activity relationships of phenolic compounds from traditional Chinese medicinal plants. Life Sci. 2006; 78: 2872-2888.
43. Bodet C, La VD, Epifano F, Grenier D. Naringenin has anti-inflammatory properties in macrophage and ex vivo human whole-blood models. J Periodont Res. 2008; 43: 400-407.
44. Amaro IM, Rocha J, Vila-Real H, Eduardo-Figueira M, Mota-Filipe H, Sepodes B, et al. Anti-inflammatory activity of naringin and the biosynthesized naringenin by naringinase immobilized in microstructured materials in a model of DSS-induced colitis in mice. Food Res Int. 2009; 42: 1010-1017.
45. Trzeciakiewicz A, Habauzit V, Mercier S, Barron D, Urpi-Sarda M, Manach C, et al. Molecular mechanism of hesperetin-7-O-glucuronide, the main circulating metabolite of hesperidin, involved in osteoblast differentiation. J Agric Food Chem. 2010; 58: 668-675.
46. Gao K, Henning S, Niu Y, Youssefian AA, Seeram NP, Xu A, et al. The citrus flavonoid naringenin stimulates DNA repair in prostate cancer cells. J Nutr Biochem. 2006; 17: 89-95.
47. So F, Guthrie N, Chambers A, Moussa M, Carroll K. Inhibition of human breast cancer cell proliferation and delay of mammary tumorigenesis by flavonoids and citrus juices. Nutr Cancer. 1996; 26: 167-181.
48. Manthey JA, Guthrie N. Antiproliferative activities of citrus flavonoids against six human cancer cell lines. J Agric Food Chem. 2002; 50: 5837-5843.
49. Chanet A, Milenkovic D, Manach C, Mazur A, Morand C. Citrus flavanones: what is their role in cardiovascular protection? J Agric Food Chem. 2012; 60: 8809-8822.
50. Makris DP, Kallithraka S, Kefalas P. Flavonols in grapes, grape products and wines: Burden, profile and influential parameters. J Food Compos Anal. 2006; 19: 396-404.
51. Hollman PCH, Katan MB. Bioavailability and health effects of dietary flavonols in man. Arch Toxicol Suppl. 1998; 20: 237-248.
52. Chen AY, Chen YC. A review of the dietary flavonoid, kaempferol on human health and cancer chemoprevention. Food Chem. 2013; 138: 2099-2107.
53. Li Y, Ding Y. Minireview: Therapeutic potential of myricetin in diabetes mellitus. Food Sci Human Wellness. 2012; 1: 19-25.
54. Woo HD, Kim J. Dietary flavonoid intake and smoking-related cancer risk: a meta-analysis. PLoS ONE. 2013; 8(9): e75604.
55. Marin FR, Perez-Alvarez JA, Soler-Rivas C. Isoflavones as functional food components. Bioact Natural Prod. 2005; 32: 1177-1207.
56. Clavel T, Fallani M, Lepage P, Levenez F, Mathey J, Rochet V, et al. Isoflavones and functional foods alter the dominant intestinal microbiota in postmenopausal women. J Nutr. 2005; 135(12): 2786-2792.
57. Yeung J, Yu T. Effects of isoflavones (soy phyto-estrogens) on serum lipids: a meta-analysis of randomized controlled trials. Nutr J. 2003; 2: 15.
58. Wood CE, Register TC, Franke AA. Dietary soy isoflavones inhibit estrogen effects in the postmenopausal breast. Cancer Res. 2006; 66: 1241-1249.
59. Cassidy A, Bingham S, Setchell KDR. Biological effects of a diet of soy protein rich in isoflavones on the menstrual cycle of premenopausal women. Am J Clin Nutr. 1994; 60: 333-340.
60. Barlow J, Johnson JAP, Scofield L. Early life exposure to the phytoestrogen daidzein and breast cancer risk in later years. Breast Cancer Environ Res Cent. 2007; 38-46.
61. Levis S, Strickman-Stein N, Doerge DR, Krisher J. Design and baseline characteristics of the soy phytoestrogens as replacement estrogen (SPARE) study - a clinical trial of the effects of soy isoflavones in menopausal women. Contemp Clin Trials. 2010; 31: 293-302.
62. Morabito N, Crisafulli A, Vergara C, Gaudio A, Lasco A, Frisina N, et al. Effects of genistein and hormone-replacement therapy on bone loss in early postmenopausal women: a randomized double-blind placebo-controlled study. J Bone Miner Res. 2002; 17(10): 1904-1912.
63. Kim HK, Nelson-Dooley C, Della-Fera MA, Yang JY, Zhang W, Duan J, et al. Genistein decreases food intake, body weight, and fat pad weight and causes adipose tissue apoptosis in ovariectomized female mice. J Nutr. 2006; 136: 409-414.
64. Lin Y, Shi R, Wang X, Shen HM. Luteolin, a flavonoid with potentials for cancer prevention and therapy. Curr Cancer Drug Targets. 2008; 8(7): 634-646.
65. Patel D, Shukla S, Gupta S. Apigenin and cancer chemoprevention: progress, potential and promise. Int J Oncol. 2007; 30: 233-245.
66. Leopoldini M, Pitarch IP, Russo N, Toscano M. Structure, conformation, and electronic properties of apigenin, luteolin, and taxifolin antioxidants. A first principle theoretical study. J Phys Chem A. 2004; 108: 92-96.
67. Horinaka M, Yoshida T, Shiraishi T. The dietary flavonoid apigenin sensitizes malignant tumor cells to tumor necrosis factor - related apoptosis-inducing ligand. Mol Cancer Ther. 2006; 5: 945-951.
68. Galati G, O’Brien PJ. Potential toxicity of flavonoids and other dietary phenolics: significance for their chemopreventive and anticancer properties. Free Radic Biol Med. 2004; 37: 287-303.
69. Lapidot T, Walker MD, Kanner J. Antioxidant and prooxidant effects of phenolics an pancreatic cells in vitro. J Agric Food Chem. 2002; 50: 7220-7225.
70. Silverstein DM. Inflammation in chronic kidney disease: role in the progression of renal and cardiovascular disease. Ped Neph. 2009; 24: 1445-1152.
71. Manthey JA, Grohmann K, Guthrie N. Biological properties of citrus flavonoids pertaining to cancer and inflammation. Curr Med Chem. 2001; 8: 135-153.
72. Emim JA, Oliveira AB, Lapa AJ. Pharmacological evaluation of the anti-inflammatory activity of a citrus bioflavonoid, hesperidin, and the isoflavonoids, duartin and claussequinone, in rats and mice. J Pharm Pharmacol. 1994; 46: 118-122.
73. Sakata K, Hirose Y, Qiao Z, Tanaka T, Mori H. Inhibition of inducible isoforms of cyclooxygenase and nitric oxide synthase by flavonoid hesperidin in mouse macrophage cell line. Cancer Lett. 2003; 199: 139-145.
74. Kaul TN, Middleton E, Ogra PL. Antiviral effect of flavonoids on human viruses. J Med Virol. 1985; 15: 71-79.
75. Lila MA. Anthocyanins and human health: an in vitro investigative approach. J Biomed Biotechnol. 2004;5:306-313.
76. Bell DR, Gochenaur K. Direct vasoactive and vasoprotective properties of anthocyanin-rich extracts. J Appl Physiol. 2006; 100: 1164-1170.
77. Toufektsian MC, de Lorgeril M, Nagy N, Salen P, Donati MB, Giordano L, et al. Chronic dietary intake of plant-derived anthocyanins protects the rat heart against ischemia-reperfusion injury. J Nutr. 2008; 138: 747-752.
78. Shokol TV, Lozinskii OA, Tkachuk TM, Khilya VP. 7-hydroxy-3-phenoxy-8-formylchromones, analogs of natural flavonoids. Chem Nat Comp. 2009; 45(3): 350-355.
79. Lewis DA, Shaw GP. A natural flavonoid and synthetic analogues protect the gastric mucosa from aspirin-induced erosions. J Nutr Biochem. 2001; 12: 95-100.
80. Verghese J, Nguyen T, Oppegard LM, Seivert LM, Hiasa H, Ellis KC. Flavone-based analogues inspired by the natural product simocyclinone D8 as DNA gyrase inhibitors. Bioorg Med Chem Lett. 2013; 23: 5874-5877.
81. Fu H, Lin M, Katsumura Y, Yokoya A, Hata K, Muroya Y, et al. Protective effects of silybin and analogues against X-ray radiation-induced damage. Acta Biochim Biophys Sin. 2010; 42: 489-495.
82. Abu-Aisheh MN, Mustafa MS, El-Abadelah MM, Naffa RG, Ismail SI, Zihlif MA, et al. Synthesis and biological activity assays of some new N1-(flavon-7-yl)amidrazone derivatives and related congeners. Eur J Med Chem. 2012; 54: 65-74.
83. Torres-Piedra M, Ortiz-Andrade R, Villalobos-Molina R, Singh N, Medina-Franco JL, Webster SP. A comparative study of flavonoid analogues on streptozotocin-nicotinamide induced diabetic rats: quercetin as a potential antidiabetic agent acting via 11β-hydroxysteroid dehydrogenase type 1 inhibition. Eur J Med Chem. 2010; 45: 2606-2612.
84. Bohm BA. Introduction to flavonoids. Vol. 2. Amsterdam: CRC Press, 1999.
85. Nijveldt RJ, van Nood E, van Hoorn DEC, Boelens PG, van Norren K, van Leeuwen PAM. Flavonoids: a review of probable mechanisms of action and potential applications. Am J Clin Nutr. 2001; 74: 418-425.
86. Bae EA, Han MJ, Lee M, Kim DH. In vitro inhibitory effect of some flavonoids on rotavirus infectivity. Biol Pharm Bull. 2000; 23: 1122-1124.
87. Frydman A, Liberman R, Huhman DV, Carmeli-Weissberg M, Sapir-Mir M, Ophir R, et al. The molecular and enzymatic basis of bitter/non-bitter flavor of citrus fruit: evolution of branch-forming rhamnosyl-transferases under domestication. Plant J. 2013; 73: 166-178.
88. Drewnowski A, Gomez-Carneros C. Bitter taste, phytonutrients, and the consumer: a review. Am J Clin Nutr. 2000; 72: 1424-1435.
89. Aron PM, Shellhammer TH. A discussion of polyphenols in beer physical and flavour stability. J Inst Brew. 2010; 116(4): 369-380.
90. Pyrzynska K, Biesaga M. Analysis of phenolic acids and flavonoids in honey. Trends Anal Chem. 2009; 28(7): 893-902.
91. Musa AE, Gasmelseed GA. Characterization of Lawsonia inermis (Henna) as vegetable tanning material. J Forest Prod Indust. 2012; 1(2): 35-40.
92. Romer FH, Underwood AP, Senekal ND, Bonnet SL, Duer MJ, Reid DG, et al. Tannin fingerprinting in vegetable tanned leather by solid state NMR spectroscopy and comparison with leathers tanned by other processes. Molecules. 2011; 16: 1240-1252.
93. Phipps E, Hecht J, Martin CE. The colonial andes: tapestries and silverwork. Yale Univ Press/ Metropolitan Museum of Art Series, New York, 2004: 1530-1830.
94. Sequin-Frey M. The chemistry of plant and animal dyes. JCE. 1981; 58(4): 301-305.
How to Cite
Brodowska, K. Natural Flavonoids: Classification, Potential Role, and Application of Flavonoid Analogues. European Journal of Biological Research 2017, 7, 108-123.
Review Articles