Exposure to stress minimizes the zone of antimicrobial action: a phenotypic demonstration with six Acinetobacter baumannii strains

  • A. Ebinesh Medical student, Shridevi Institute of Medical Sciences and Research Hospital, Tumkur 572106, Karnataka, India
  • G. S. Vijaykumar Department of Microbiology, Shridevi Institute of Medical Sciences and Research Hospital, Tumkur, Karnataka, India
  • T. S. Kiran Department of Microbiology, Shridevi Institute of Medical Sciences and Research Hospital, Tumkur, Karnataka, India
Keywords: Acinetobacter baumannii, Environmental stress, Antimicrobial resistance, Bacterial stress response, Stress-induced resistance

Abstract

Aim: To phenotypically study the role of domestic environmental stress in the emergence of antimicrobial resistance in Acinetobacter baumannii. Materials and Methods: Six strains of A. baumannii were initially subjected to AST and then were exposed to various stresses (temperature, pH and random combinations). Stressed cells were subcultured and then subjected for AST. The ZOIs before and after exposure to stress were compared. Statistical analysis was done using Student t-test at p < 0.10. Results: Exposure to stresses and combination of stresses resulted in substantial reduction in the ZOIs. Stress hardening was associated with further reduction in ZOIs. Conclusion: Exposure to domestic environmental stress imparted a significant and substantial reduction in the susceptibility of A. baumannii strains to antibiotics.

DOI: http://dx.doi.org/10.5281/zenodo.1184152

References

1. Larson E. Community factors in development of antibiotic resistance. Annu Rev Pub Health. 2007; 28: 435-447.

2. Gonzalez Villoria AM, Valverde Garduno V. Antibiotic-resistant Acinetobacter baumannii increasing success remains a challenge as a nosocomial pathogen. J Pathogen. 2016: 7318075.

3. Celenza G, Pellegrini C, Caccamo M, Segatore B, Amicosante G, Perilli M. Spread of bla (CTX-M-type) and bla(PER-2) beta-lactamasegenes in clinicalisolates from Bolivian hospitals. J Antimicrob Chemother. 2006; 57: 975-978.

4. Goossens H. European status of resistance in nosocomial infections. Chemotherapy. 2005; 51: 177-181.

5. Leeb M. Antibiotics: a shot in the arm. Nature. 2004; 431: 892-893.

6. Rice LB. Federal funding for the study of antimicrobial resistance in nosocomial pathogens: no ESKAPE. J Infect Dis. 2008; 197: 1079-1081.

7. Ward NR, Wolfe RL, Justice CA, Olson BH. The identification of gram-negative, nonfermentative bacteria from water: problems and alternative approaches to identification. Adv Appl Microbiol. 1986; 31: 293-365.

8. Hrenovic J, Durn G, Goic-Barisic I, Kovacic A. Occurrence of an environmental Acinetobacter baumannii strain similar to clinical isolate in Paleosol from Croatia. Appl Environ Microbiol. 2014; 89: 2860-2866.

9. Lopez-Hernandez S, Alarcon T, Lopez-Brea M. Carbapenem resistance mediated by beta-lactamases in clinical isolates of Acinetobacter baumannii in Spain. Eur J Clin Microbiol Infect Dis. 1998; 17: 282-285.

10. Towner KJ. Acinetobacter: an old friend, but a new enemy. J Hosp Infect. 2009; 73: 355-363.

11. Livermore D-M. The threat from the pink corner. Ann Med. 2003; 35: 226-234.

12. Gaynes R, Edwards JR, the National Nosocomial Infections Surveillance System. Overview of nosocomial infections caused by gram-negative bacilli. Clin Infect Dis. 2005; 41: 848-854.

13. Garza-Gonzalez E, Llaca-Dıaz JM, Bosques-Padilla FJ, Gonzalez GM. Prevalence of multidrug-resistant bacteria at a tertiary-care teaching hospital in Mexico: special focus on Acinetobacter baumannii. Chemotherapy. 2010; 56: 275-279.

14. Morfín-Otero R, Alcántar-Curiel MD, Rocha MJ, Alpuche-Aranda CM, Santos-Preciado JI, Gayosso-Vázquez C, et al. Acinetobacter baumannii infections in a tertiary care hospital in Mexico over the past 13 years. Chemotherapy. 2013; 59: 57-65.

15. Li J, Nation RL, Turnidge JD, Milne RW, Coulthard K, Rayner CR, Paterson DL. Colistin: the re-emerging antibiotic for multidrug-resistant Gram-negative bacterial infections. Lancet Infect Dis. 2006; 6: 589-601.

16. Gales AC, Jones RN, Sader HS. Global assessment of the antimicrobial activity of polymyxin B against 54731 clinical isolates of Gram-negative bacilli: report from the SENTRY Antimicrobial Surveillance Programme (2001-2004). Clin Microbiol Infect. 2006; 12: 315-321.

17. Hernan RC, Karina B, Gabriela G, Marcela N, Carlos V, Angela F. Selection of colistin-resistant Acinetobacter baumannii isolates in post- neurosurgical meningitis in an intensive care unit with high presence of heteroresistance to colistin. Diagn Microbiol Infect Dis. 2009; 65: 188-191.

18. Park YK, Choi JY, Jung SI, Park KH, Lee H, Jung DS, et al. Two distinct clones of carbapenem-resistant Acinetobacter baumannii isolates from Korean hospitals. Diagn Microbiol Infect Dis. 2009; 64: 389-395.

19. Wilson SJ, Knipe CJ, Zieger MJ, Gabehart KM, Goodman JE, Volk HM, Sood R. Direct costs of multidrug-resistant Acinetobacter baumannii in the burn unit of a public teaching hospital. Am J Infect Control. 2004; 32: 342-344.

20. Bergogne BE, Towner KJ. Acinetobacter spp. as nosocomial pathogens: microbiological, clinical and epidemiological features. Clin Microbiol Rev. 1996; 9: 148-165.

21. Lee NY, Lee HC, Ko NY, Chang CM, Shih HI, Wu CJ, Ko WC. Clinical and economic impact of multidrug resistance in nosocomial Acinetobacter baumannii bacteremia. Infect Control Hosp Epidemiol. 2007; 28: 713-719.

22. Hota B. Contamination, disinfection, and cross-colonization: are hospital surfaces reservoirs for nosocomial infection? Clin Infect Dis. 2004; 39: 1182-1189.

23. Villegas MV, Hartstein AI. Acinetobacter outbreaks, 1977-2000. Infect Control Hosp Epidemiol. 2003; 24: 284-295.

24. Getchell-White SI, Donowitz LG, Gröschel DH. The inanimate environment of an intensive care unit as a potential source of nosocomial bacteria: evidence for long survival of Acinetobacter calcoaceticus. Infect Control Hosp Epidemiol. 1989; 10: 402-407.

25. Poole K. Bacterial stress responses as determinants of antimicrobial resistance. J Anitmicrob Chemother. 2012; 196: 1-21.

26. Eng RH, Padberg FT, Smith SM, Tan EN, Cherubin CE. Bactericidal effects of antibiotics on slowly growing and nongrowing bacteria. Antimicrob Agents Chemother. 1991; 35: 1824-1828.

27. Morita Y, Sobel ML, Poole K. Antibiotic inducibility of the MexXY multidrug efflux system of Pseudomonas aeruginosa: involvement of the antibiotic-inducible PA5471 gene product. J Bacteriol. 2006; 188: 1847-1855.

28. Cirz RT, Romesberg FE. Controlling mutation: intervening in evolution as a therapeutic strategy. Crit Rev Biochem Mol Biol. 2007; 42: 341-354.

29. Dorr T, Lewis K, Vulic M. SOS response induces persistence to fluoroquinolones in Escherichia coli. PLoS Genet. 2009; 5: e1000760.

30. Ebinesh A, Kailash TV. Looking into antibiotic failure: deemed a threat, indeed not. Int J Appl Res Stud. 2016; 5.

31. Ebinesh A, Kailash TV. Bacteriophage-mediated micro biome manipulation: a novel venture in fostering infant gut health. Int J Med Biotechol Genetics. 2016; 4: 34-39.

32. Ebinesh A, Kailash TV. Horizon of new hope towards a robust infantile gut: advent of bacteriophages in tuning gut microbiome. Arch Clin Microbiol. 2016; 7: 5.

33. McMahon MAS, Xu J, Moore JE, Blair IS, McDowell DA. Environmental stress and antibiotic resistance in food related pathogens. App Environ Microbiol. 2007; 73: 211-217.

34. FaeziGhasemi M, Gazemi S. Effects of sub-lethal environmental stresses on cell-survival and antibacterial susceptibility of Listeria monocytogenes PTCC1297. Zahedan J Res Med Sci. 2015; 17: 1-6.

35. Al-Nabulsi AA, Osaili TM, Shaker RR, Olaimat AN, Jaradat ZW, Zain Elabedeen NA, Holley RA. Effects of osmotic pressure, acid or cold stresses on antibiotic susceptibility of Listeria monocytogenes. Food Microbiol. 2015; 46: 154-160.

36. Ganjian H, Nikokar I, Tieshayar A, Mostafaei A, Amirmozafari N, Kiani S. Effect of salt stress and antimicrobial drug resistance and protein profile of Staphylococcus aureus. Jundishapur J Microbiol. 2012; 5: 328-331.

37. Doughari JH, Ndakidemi PA, Human IS, Benade S. Effect of oxidative stress on viability and virulence of environmental Acinetobacter hemolyticus isolates. Sci Res Essays. 2012; 7: 504-510.

38. Performance standards for antimicrobial disc susceptibility tests, M100-S25. CLSI, Vol. 35 No. 3, Jan 2015.
39. Litake GM, Ghole VS, Niphadkar KB, Joshi SG. Phenotypic ESBL detection in Acinetobacter baumannii: a real challenge. Am J Infect Dis. 2015; 11: 49-53.

40. Kumar E, Usha K, Chaudhury A, Ramana BV, Gopal DV. Detection of AmpC β-lactamases production in Acinetobacter species by inhibitor (disk) based & modified three dimensional (enzyme extraction) methods. Indian J Med Res. 2014; 140: 688-690.

41. Yong D, Lee K, Yum JH, Shin HB, Rossolini GM, Chong Y. Imipenem-EDTA disk method for differentiation of metallo-β-lactamase-producing clinical isolates of Pseudomonas spp. and Acinetobacter spp. J Clin Microbiol. 2002; 40: 3798-3801.

42. Manchanda V, Sanchaita S, Singh NP. Multidrugresistant Acinetobacter. J Glob Infect Dis. 2010; 2: 291-304.

43. Bonomo RA, Szabo D. Mechanisms of multidrug resistance in Acinetobacter species and Pseudomonas aeruginosa. Clin Infect Dis. 2006; 43(suppl 2): S49-56.

44. Quale J, Bratu S, Landman D, Heddurshetti R. Molecular epidemiology and mechanisms of carbapenem resistance in Acinetobacter baumannii endemic in New York City. Clin Infect Dis. 2003; 37: 214-220.

45. Patra P, Klumpp S. Population dynamics of bacterial persistence. PLoS One. 2013; 8: e62814.

46. Bahram RA, Magee JT, Jackson SK. Effect of temperature on aminoglycoside binding sites in Stenotrophomonas maltophilia. J Antimicrob Chemother. 1997; 39: 19-24.

47. Helmann JD. The extracytoplasmic function (ECF) sigma factors. Adv Microb Physiol. 2002; 46: 47-110.

48. Cao M, Helmann JD. The Bacillus subtilis extracytoplasmic-function σX factor regulates modification of the cell envelope and resistance to cationic antimicrobial peptides. J Bacteriol. 2004; 186: 1136-1146.

49. Bandow JE, Brotz H, Hecker M. Bacillus subtilis tolerance of moderate concentrations of rifampin involves the σB-dependent general and multiple stress response. J Bacteriol. 2002; 184: 459-467.

50. Ades SE. Control of the alternative sigma factor σE in Escherichia coli. Curr Opin Microbiol. 2004; 7: 157-162.

51. Erickson KD, Detweiler CS. The Rcs phosphorelay system is specific to enteric pathogens/commensals and activates ydeI, a gene important for persistent Salmonella infection of mice. Mol Microbiol. 2006; 62: 883-894.

52. Höller C, Witthuhn D, Janzen-Blunck B. Effect of low temperature on growth, structure and metabolism of Campylobacter coli SP10. Appl Environ Microbiol. 1998; 64: 581-587.

53. Al-Nabulsi AA, Osaili TM, Elabedeen NA, Jaradat ZW, Shaker RR, Kheirallah KA, et al. Impact of environmental stress desiccation, acidity, alkalinity, heat or cold on antibiotic susceptibility of Cronobacter sakazakii. Int J Food Microbiol. 2011; 146: 137-143.

54. Alonso-Hernando A, Capita R, Prieto M, Alonso-Calleja C. Comparison of antibiotic resistance patterns in Listeria monocytogenes and Salmonella enterica strains pre-exposed and exposed to poultry decontaminats. Food Control. 2009; 20: 1108-1111.

55. Gilbert P, Collier PJ, Brown MR. Influence of growth rate on susceptibility to antimicrobial agents: biofilms, cell cycle, dormancy and stringent response. Antimicrob Agents Chemother. 1990; 34: 1865-1868.

56. Bischoff M, Berger-Bachi B. Teicoplanin stress-selected mutations increasing σB activity in Staphylococcus aureus. Antimicrob Agents Chemother. 2001; 45: 1714-1720.

57. Morikawa K, Maruyama A, Inose Y, Higashide M, Hayashi H, Ohta T. Overexpression of sigma factor, σB, urges Staphylococcus aureus to thicken the cell wall and to resist β-lactams. Biochem Biophys Res Commun. 2001; 288: 385-389.

58. Dorel C, Lejeune P, Rodrigue A. The Cpx system of Escherichia coli, a strategic signaling pathway for confronting adverse conditions and for settling biofilm communities? Res Microbiol. 2006; 157: 306-314.

59. Raffa RG, Raivio TL. A third envelope stress signal transduction pathway in Escherichia coli. Mol Microbiol. 2002; 45: 1599-1611.

60. Batchelor E, Walthers D, Kenney LJ, Goulian M. The Escherichia coli CpxA-CpxR envelope stress response system regulates expression of the porins OmpF and OmpC. J Bacteriol. 2005; 187: 5723-5731.

61. Al-Mahin A, Sugimoto S, Higashi C. Improvement of multiple-stress tolerance and lactic acid production in Lactococcus lactis NZ9000 under conditions of thermal stress by heterologous expression of Escherichia coli dnaK. Appl Environ Microbiol. 2010; 76: 4277-4285.

62. Kato A, Groisman EA. The PhoQ/PhoP regulatory network of Salmonella enterica. Adv Exp Med Biol. 2008; 631: 7-21.

63. Barrow K, Kwon DH. Alterations in two-component regulatory systems of phoPQ and pmrAB are associated with polymyxin B resistance in clinical isolates of Pseudomonas aeruginosa. Antimicrob Agents Chemother. 2009; 53: 5150-5154.

64. Miller AK, Brannon MK, Stevens L, Johansen HK, Selgrade SE, Miller SI, et al. PhoQ mutations promote lipid A modification and polymyxin resistance of Pseudomonas aeruginosa found in colistin-treated cystic fibrosis patients. Antimicrob Agents Chemother. 2011; 55: 5761-5769.

65. Fernandez L, Gooderham WJ, Bains M, McPhee JB, Wiegand I, Hancock RE. Adaptive resistance to the “last hope” antibiotics polymyxin B and colistin in Pseudomonas aeruginosa is mediated by the novel two-component regulatory system ParR-ParS. Antimicrob Agents Chemother. 2010; 54: 3372-3382.

66. Muller C, Plesiat P, Jeannot K. A two-component regulatory system interconnects resistance to polymyxins, aminoglycosides, fluoroquinolones, and b-lactams in Pseudomonas aeruginosa. Antimicrob Agents Chemother. 2010; 55: 1211-1221.

67. Fraud S, Campigotto AJ, Chen Z, Poole K. The MexCD-OprJ multidrug efflux system of Pseudomonas aeruginosa: involvement in chlorhexidine resistance and induction by membrane damaging agents dependent upon the AlgU stress-response sigma factor. Antimicrob Agents Chemother. 2008; 52: 4478-4482.

68. Velkov VV. How environmental factors regulate mutagenesis and gene transfer in microorganisms. J Biosci. 1999; 24: 529-559.

69. Macia MD, Blanquer D, Togores B, Sauleda J, Perez JL, Oliver A. Hypermutation is a key factor in development of multiple-antimicrobial resistance in Pseudomonas aeruginosa strains causing chronic lung infections. Antimicrob Agents Chemother. 2005; 49: 3382-3386.

70. Martinez JL, Baquero F. Mutation frequencies and antibiotic resistance. Antimicrob Agents Chemother. 2000; 44: 1771-1777.

71. Rowan NJ. Evidence that inimical food-preservation barriers alter microbial resistance, cell morphology and virulence. Trends Food Sci Technol. 1999; 10: 261-270.

72. Ebinesh A. Conspiracy of domestic microenvironment, bacterial stress response and directed mutagenesis towards antimicrobial resistance: lessons for health care. J Infect Dis Med Microbiol. 2017; 1: 1-3.

73. Harms A, Maisonneuve E, Gerdes A. Mechanisms of bacterial persistence during stress and antibiotic exposure. Science. 2016; 354(6318): aaf4268.

74. Ebinesh A. Bacterial stress response and cross resistance to antibiotics in the light of natural selection. J Infect Dis Immune Ther. 2016; 1: 1.
Published
2018-06-30
How to Cite
Ebinesh, A., Vijaykumar, G., & Kiran, T. (2018). Exposure to stress minimizes the zone of antimicrobial action: a phenotypic demonstration with six Acinetobacter baumannii strains. MicroMedicine, 6(1), 16-35. Retrieved from http://www.journals.tmkarpinski.com/index.php/mmed/article/view/11
Section
Research Articles