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ABSTRACT: Beta-lactamase producing bacteria have become a public health burden due to antibiotics usage 

in livestock production. This study was carried out to detect extended spectrum beta-lactamase (ESBL) and 

metallo-beta-lactamase (MBL) producing Pseudomonas spp. from poultry droppings and piggery dung in 

Ibadan. Poultry droppings and piggery dung were collected from the University of Ibadan livestock farms 

while isolation of Pseudomonas spp. was done using Pseudomonas base agar supplemented with 

Pseudomonas C-N supplement and were conventionally characterized. Detection of ESBL and MBL 

producing isolates were by double disc synergy test and imipenem-EDTA combined disc test respectively. 

Antimicrobial susceptibility test was by disc diffusion method against trimethoprim (5 µg), amoxicillin/ 

clavulanate (30 µg), cefotaxime (30 µg), ceftazidime (30 µg), cefepime (30 µg), aztreonam (30 µg), imipenem 

(10 µg), gentamicin (10 µg) and ciprofloxacin (10 µg). A total of 108 Pseudomonas spp. were isolated 

comprising 53.7% from poultry droppings and 46.3% from piggery dung. The isolates include P. aeruginosa 

(63.0%), P. putida (24.0%) and P. stutzeri (13.0%). While the ESBL producers were P. aeruginosa (10.2%) 

and P. stutzeri (1.9%), none of the isolates produced MBL. However, 63.6% the ESBL producers showed 

resistance to trimethoprim while 61.5% were multidrug resistant. The high prevalence of antibiotics resistance 

and multidrug resistant strains observed among the Pseudomonas spp. infer that poultry droppings and 

piggery dung can serves as a reservoir for growth and dissemination of clinically significant antibiotics 

resistance among bacterial species. 
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1. INTRODUCTION 

The use of antibiotics in livestock production has aggravated the risk factor associated with the 

development and distribution of antibiotics resistance from animal husbandry [1]. Antibiotic resistance is a 

worldwide problem and new forms of antibiotic resistance emerges each year which has cross international 

boundaries and spread between continents with ease. The World Health Organisation (WHO) described 

antibiotic-resistant bacteria as “nightmare bacteria” or “superbugs” that pose catastrophic threat to the public 

health [2]. According to the United State report, it was estimated that at least 2,049,442 illnesses were caused 

by antibiotics resistant infections resulting into about 23,000 deaths [3]. The use of antibiotics in agricultural 
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settings has been reported to exert selective pressure which favours the survival of resistant strains of bacteria 

over susceptible ones, resulting to increase in resistant bacteria within the microbial communities [4].  

 Antibiotics has been reported to be widely and indiscriminately used in Nigeria as additives to feeds 

and water, to treat diseases and promote animal growth in livestock production [5, 6]. This practice has led to 

increase in the emergence of antibiotics resistant in livestock production such as poultry and piggery. More so, 

majority of the animal  farms in Nigeria have no waste treatment facility, hence,  all the waste generated in the 

farm are either dumped in a farmland or in a remote area such as in or close to water bodies [7]. Wastes 

generated from the livestock are also used as feed supplement to generate maggot for feeding fishes in 

aquaculture. This could constitute threat to humans inhabiting the vicinities where these animal wastes are 

dumped because of the possibilities of being exposed to antibiotics resistant bacteria in the waste.  

 Pseudomonas species are emerging opportunistic pathogen of clinical importance that survives in 

harsh conditions and are also reported to be naturally resistant to penicillin and most related beta-lactam 

antibiotics. Pseudomonas aeruginosa is one of the bacteria most frequently responsible for nosocomial and 

community acquired infections. Development of resistance to β-lactams in clinical strains of P. aeruginosa 

has been reported to be associated with the production of acquired β-lactamases, constitutive overproduction 

of the cephalosporinase, AmpC or non-enzymatic mechanisms such as drug efflux or outer membrane 

impermeability [8, 9]. 

 Extended spectrum beta-lactamase and metallo-beta-lactamase production have been reported as some 

of the mechanisms that leads to the increase in resistance of Pseudomonas spp. to beta-lactam drugs [10]. A 

lot of studies have investigated the occurrence of ESBL and MBL producing Enterobacteriaceae in livestock 

waste but there is dearth of information of ESBL and MBL producing Pseudomonas spp. in livestock wastes. 

Hence, the present study is aimed at determining the occurrence of ESBL and MBL producing Pseudomonas 

spp. isolated from poultry droppings and piggery dung in Ibadan, Nigeria. 

2. MATERIALS AND METHODS 

2.1. Sampling site and sample collection 

 Poultry droppings and piggery dung were collected from the University of Ibadan poultry farm 

(latitude 7.4401, longitude 3.900) and piggery farm (latitude 7.4401, longitude 3.8996) between the months of 

March and April 2018. The samples were labeled appropriately, preserved in ice packs and transported to 

Environmental Laboratory, Department of Microbiology University of Ibadan for immediate analyses. 

2.2. Isolation and identification of the Pseudomonas species 

 Isolation of Pseudomonas species was done using the standard pour plate technique on Pseudomonas 

base agar (CM0559, Oxoid, Basingstoke, UK) supplemented with pseudomonas C-N supplement (SR102, 

Oxoid, Basingstoke, UK) a selective medium for the isolation of the Pseudomonas species. The inoculated 

plates were incubated at 37oC for 48 hours. Distinct bacteria growth with either bluish or yellowish green 

pigment, irregular margin, smooth or crenate or rugose surface, semi translucent or raised colony were selected 

as probable Pseudomonas spp. and sub cultured by repeated streaking on nutrient agar to obtain the pure 

culture. Characterization of these isolates was done based on their distinct pigment production and 

conventional biochemical tests [11]. 

2.3. Screening for potential extended spectrum beta-lactamase producing Pseudomonas species 

 Potential ESBL-producing Pseudomonas spp. screening was done using ceftazidime (30 μg) and 
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cefotaxime (30 μg). Isolates showing reduced susceptibility to at least one of these drugs with zone of 

inhibition for ceftazidime ≤ 22 mm and cefotaxime ≤ 27 mm were considered as potential ESBL producing 

strains [12]. 

2.4. Phenotypic detection of extended spectrum beta-lactamase producing Pseudomonas species 

 Pseudomonas species that were suspected to be potential ESBL producers were confirmed for ESBL 

production using the double disk synergy test [13]. Sterile cotton swab was used to inoculate the standardized 

inoculum (corresponding to 0.5 McFarland standard) on Mueller Hinton agar plate. Two disks of 3rd 

generation cephalosporins (ceftazidime 30 μg, cefotaxime 30 μg) and fourth generation cephalosporin 

(cefepime 30 μg) disks were placed at 20 mm distance center to center from amoxicillin/clavulanate (30 μg) 

disk preceding incubation for 18-24 hours at 35°C. Augmentation of the zone of inhibition of any one of the 

three cephalosporin antibiotics disks towards amoxicillin/clavulanate indicated the presence of extended-

spectrum beta-lactamases. 

2.5. Antibiotics susceptibility test of the extended spectrum beta-lactamase producing Pseudomonas 

isolates 

 Antibiotic susceptibility test of the ESBL producing Pseudomonas species was carried out against nine 

antimicrobial agents using the standard Kirby-Bauer disc diffusion method [12]. The antibiotics used include 

the following classes of antibiotics: beta-lactam inhibitor (amoxicillin/clavulanate 30 μg), broad spectrum 

cephalosporin from the 3rd and 4th generation (ceftazidime 30 μg, cefotaxime 30 μg, and cefepime 30 μg), 

monobactam (aztreonam 30 μg), carbapenem (imipenem 10 μg), aminoglycosides (gentamicin 10 μg), 

fluoroquinolone (ciprofloxacin 5 μg), and folate pathway inhibitor (trimethoprim 5 µg).The antibiotic disks 

were placed on Mueller Hinton agar plates inoculated with the standardized inoculum and incubated at 35oC 

for 18-24 hours. The zones of inhibition were measured in millimeter and interpreted based on CLSI 

guidelines [12]. Isolates showing resistance to at least three different classes of antibiotics were considered as 

multidrug resistant strains [14]. 

2.6. Phenotypic detection of metallo β-lactamase (MβL) activity in ESBL-producing Pseudomonas 

species 

 Imipenem resistant ESBL-producing Pseudomonas isolates were tested for MBL production using 

imipenem and ethylenediaminetetraacetate (EDTA) combined disk test. Two imipenem disks were placed at a 

distance of 5 cm from each other on Mueller Hinton agar plate inoculated with the standardized inoculum and 

10 μl of 0.5 M EDTA solution were added to one of the imipenem disk. Any of the isolates that showed 

increase of zone of inhibition ≥7 mm between imipenem+EDTA disk in comparison with the imipenem disk 

alone after 18-24 hours incubation were considered MBL producers [15]. 

3. RESULTS 

 A total of 108 Pseudomonas spp. were isolated comprising 58 (53.7%) from poultry droppings and 50 

(46.3%) form piggery dung. Identification of the isolates showed that 63.0% of the Pseudomonas species 

were P. aeruginosa, 24.0% were P. putida while 13.0% were P. stutzeri (Table 1). The ESBL producers were 

P. aeruginosa (10.2%) and P. stutzeri (1.9%), while none of the isolates produced MBL (Table 2). The result 

of the antibiotics susceptibility test showed that 71.4% and 50.0% of the ESBL producing P. aeruginosa 

isolated from poultry droppings and piggery dung were resistant to trimethoprim respectively. Furthermore, 
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28.6% of the ESBL producing P. aeruginosa from the poultry droppings showed resistance to the following 

antibiotics: amoxicillin/clavulanate, ceftazidime, imipenem and ciprofloxacin. It was also observed that 

42.9% of the ESBL producing P. aeruginosa were resistant to gentamicin and cefotaxime respectively, while 

none of the isolates exhibited resistance to cefepime and aztreonam.  

 

Table 1. Prevalence of the Pseudomonas species isolated from the poultry droppings and piggery dung. 

Samples 

Isolates 
n (%) 

Total 
n (%) 

P. aeruginosa P. stutzeri P. putida  

Poultry droppings 32 (47.1) 7 (50.0) 19 (73.1) 58 (53.7) 

Piggery dung 36 (52.9) 7 (50.0) 7 (26.9) 50 (46.3) 

Total 68 (63.0) 14 (13.0) 26 (24.0) 108 (100) 

 

Table 2. Extended Spectrum Beta-lactamase producing Pseudomonas spp. from the poultry droppings and piggery dung. 

Samples No. of isolates 
screened 

ESBL producing Pseudomonas species n (%) Total  
n (%) P. aeruginosa P. stutzeri P. putida 

Poultry droppings 58 7 (12.1) 1 (1.7) 0 (0) 8 (13.8) 

Piggery dung 50 4 (8.0) 1 (2.0) 0 (0) 5 (10.0) 

Total 108 11 (10.2) 2 (1.9) 0 (0) 13 (12.0) 

 

Table 3. Antibiotics resistance pattern of the ESBL-producing Pseudomonas spp. 

Antibiotics 

ESBL positive isolates from each samples, n (%) 

Pseudomonas aeruginosa Pseudomonas stutzeri 

Poultry 
droppings 

(n=7) 

Piggery 
dung (n=4) 

Total 
(n=11) 

Poultry 
droppings 

(n=1) 

Piggery dung 
(n=1) 

Total 
(n=2) 

TMP 5 (71.4) 2 (50.0) 7 (63.6) 0 (0.0) 1 (100) 1 (50.0) 

AMC 2 (28.6) 3 (75.0) 5 (45.5) 0 (0.0) 1 (100) 1 (50.0) 

CTX 3 (42.9) 1 (25.0) 4 (36.4) 0 (0.0) 1 (100) 1 (50.0) 

CAZ 2 (28.6) 3 (75.0) 5 (45.5) 0 (0.0) 1 (100) 1 (50.0) 

FEP 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 1 (100) 1 (50.0) 

ATM 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 

IPM 2 (28.6) 0 (0.0) 2 (18.2) 0 (0.0) 0 (0.0) 0 (0.0) 

GEN 3 (42.9) 1 (25.0) 4 (36.4) 1 (100) 0 (0.0) 1 (50.0) 

CIP 2 (28.6) 0 (0.0) 2 (18.2) 1 (100) 0 (0.0) 1 (50.0) 

Key: TMP = Trimethoprim (5 µg), AMC = Amoxicillin/Clavulanate (30 µg), CTX = Cefotaxime (30 µg), CAZ = 

Ceftazidime (30 µg), FEP = Cefepime (30 µg), ATM = Aztreonam (30 µg), IMP = Imipenem (10 µg), GEN = Gentamicin 

(10 µg), CIP = Ciprofloxacin (5 µg). 

 

 In addition, 75.0% of the ESBL producing P. aeruginosa from the piggery dung were resistant to 

amoxicillin/clavulanate and ceftazidime; 25.0% to cefotaxime and gentamicin while none of these isolates 

showed resistance to cefepime, imipenem and gentamicin. Furthermore, the two P. stutzeri isolated from the 

poultry dropping that produced ESBL also showed resistance to trimethoprim, amoxicillin/clavulanate, 
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cefotaxime, ceftazidime and cefepime. More so, one of the two (50.0%) P. stutzeri that was isolated from 

piggery dung showed resistance to trimethoprim, amoxicillin/clavulanate, cefotaxime, ceftazidime, cefepime, 

gentamicin and ciprofloxacin (Table 3). The Antibiotypes of the ESBL-producing Pseudomonas species 

showed that eight (61.5%) of the isolates that produced ESBL and showed resistance to antibiotics were 

multidrug resistance. In addition, two P. aeruginosa were resistant to three different antibiotics that include 

TMP-AMC-CTX and one P. stutzeri also showed resistance to five different antibiotics including TMP-AMC-

CTX-CAZ-FEP (Table 4). 

 

Table 4. Antibiotypes of the ESBL-producing Pseudomonas species. 

Antibiotypes Classes of Antibiotics P. aeruginosa P. stutzeri Total 

CAZ 1 2 0 2 (15.4) 

IMP 1 1 0 1 (7.7) 

AMC-CAZ 2 1 0 1(7.7) 

GEN-CIP 2 0 1 1(7.7) 

TMP-AMC-CTX 3 2 0 2(15.4) 

TMP-AMC-CAZ 3 1 0 1(7.7) 

TMP-CAZ-GEN 3 1 0 1(7.7) 

TMP-CTX-GEN 3 1 0 1(7.7) 

TMP-AMC-CTX-GEN 4 1 0 1(7.7) 

TMP-IMP-GEN-CIP 4 1 0 1(7.7) 

TMP-AMC-CTX-CAZ-FEP 5 0 1 1(7.7) 

Key: TMP = Trimethoprim (5 µg), AMC = Amoxicillin/Clavulanate (30 µg), CTX = Cefotaxime (30 µg), CAZ = 

Ceftazidime (30 µg), FEP = Cefepime (30 µg), ATM = Aztreonam (30 µg), IMP = Imipenem (10 µg), GEN = Gentamicin 

(10 µg), CIP = Ciprofloxacin (5 µg). 

 

4. DISCUSSION 

 In the present study, the production of ESBL producing Pseudomonas species isolated from poultry 

waste and piggery was determined. The observation from this study that showed the occurrence of                          

P. aeruginosa being the highest (63.0%) followed by P. putida (24.0%) and P. stutzeri (13.0%) is in agreement 

with the occurrence of similar isolates from  a study on clinical samples in Bangladesh in which the 

occurrence of P. aeruginosa was higher than other species [16]. However, this is not in agreement with a 

report from a study carried out on water samples in Danube where the most prevalent isolate was P. putida 

and P. aeruginosa was the least [17]. The disparity may be attributed to different studied samples. 

Furthermore, the  findings from this present study that showed 12.1% and 8.0% of the P. aeruginosa isolated 

from the poultry droppings and piggery waste being ESBL producers contradicts  the report from  another 

study on cattle fecal sample in Benin city, Nigeria where none of the P. aeruginosa was reported to have 

produced ESBL [18]. While the present study was on poultry droppings and piggery waste which could have 

been responsible for the observed difference, the numbers of isolates (10) considered in the latter study 

compared to the 108 isolates in this study might be responsible for the inability to detect ESBL producers. In 

addition, the 10.2% ESBL producing P. aeruginosa observed in this study is lower compared to the 27.5% 

ESBL producing P. aeruginosa reported in a previous study on clinical isolates in Egypt [19]. This noticeable 
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difference is not strange because a higher resistance to antibiotics including ESBL production is expected 

from clinical isolates compared to isolates from environmental samples.  

The observation from this study that none of the ESBL producing Pseudomonas spp. produced MBL is 

in agreement with the report of a study on human urine, pus, body fluids, sputum and blood where none of the 

ESBL producing isolates also produced MBL [20]. The high resistance of P. stutzeri (100%) and                              

P. aeruginosa (71.4%) from piggery dung and poultry droppings to trimethoprim in this study is of great 

concern. Although, trimethoprim has not been reported to be widely used in animal husbandry especially in 

Nigeria, sulphonamides has been reported to be widely used [21]; hence, resistance to trimethoprim might 

have co-evolved with resistance to sulphonamides since they  have the same mechanism of action (inhibition 

of foliate synthase pathway). In addition, the intrinsic resistance possessed by Pseudomonas spp. against 

trimethoprim and the fact that the antibiotic is bacteriostatic might also be responsible for the higher 

resistance observed by P. aeruginosa and P. stutzeri to trimethoprim in this study.  

 In this present study, the observed high resistance of P. stutzeri and P. aeruginosa from piggery dung to 

amoxicillin/clavulanate which were 100.0% and 75.0% is similar to the report of a study on hospital drains in 

South Africa [22]. However, a lower resistance of P. aeruginosa (28.6%) and P. stutzeri (0%) among the 

ESBL producers from the poultry droppings to amoxicillin/clavulanate was obtained compared to the 90.0% 

previously reported from a study also on poultry droppings in Nigeria [23]. The reason for the differences 

may be as a result of different studied isolates; the latter study was on E. coli while the present study was on 

Pseudomonas spp. Similarly, the 28.6% and 0% resistance of ESBL producing P. aeruginosa and P. stutzeri 

respectively from the poultry droppings in this study to cefotaxime and ceftazidime is far lower compared to 

the 100% resistance reported on similar isolates in a study on clinical isolates in Nigeria and the 100% 

resistance of P. aeruginosa from a study on camel meat in Egypt [24, 25]. One of the reasons for the disparity 

may be the method of bacterial isolation, while in the latter study, the third generation cephalosporin 

(ceftazidime and cefotaxime) was incorporated into media for isolation, Pseudomonas spp. were isolated 

without the incorporation of any antibiotics in the present study to prevent eliminating species that may be 

susceptible to these antibiotics but resistant to others. Therefore incorporating antibiotics in medium for 

isolation might have exerted selective pressure for the survival of resistance strains over susceptible ones such 

that those isolated strains showed higher resistance to the incorporated antibiotics than other antibiotics.  

 Furthermore, the observation from this study that none of the P. aeruginosa obtained from the studied 

samples showed resistance to cefepime is in agreement with the report of another study on poultry droppings 

and cow dung in South-west Nigeria [24]. However, this finding is in contrast to the report of another study 

carried out in India on various clinical samples with the resistance of 74.0% of the Pseudomonas isolates to 

cefepime [26]. This may be an indication that the usage of cefepime is more in human medicine than in 

veterinary medicine.  

 Also, that none of the P. aeruginosa and P. stutzeri in this study was observed to have exhibited any 

resistance to imipenem is similar to the previously reported resistant patterns of the isolates from poultry 

droppings and cow dung collected from different geographical location in South-western Nigeria [24]. 

However, this finding is not in agreement with other studies from which it was reported that 8.7% and 1.6% 

showed resistance to imipenem from a study on bovine meat in Abidjan and dairy farm samples in 

Nottingham [27, 28]. The low resistance of Pseudomonas species to carbapenems such as imipenem observed 

in the studied samples in this present study as well as other environmental samples in other studies may be 

because carbapenems are considered as antimicrobial agent of last resort and effective against the treatment of 
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infections caused by ESBL-producing bacteria. These antibiotics are able to resist the hydrolytic activity of 

beta-lactamase enzymes [29, 30]. Furthermore, resistance of P. aeruginosa isolated from poultry droppings 

observed in the present study to gentamicin (42.9%) and ciprofloxacin (26.8%), is comparably similar to the 

39.0% resistance reported from a previous study carried out on clinical samples in India [31]. Meanwhile, 

resistance to these antibiotics by P. aeruginosa has been previously reported to be linked to the mutation in 

the gyrA gene encoding the A subunit of the target enzyme, DNA gyrase [32]. The observed multidrug 

resistance (61.5%) of the ESBL producing Pseudomonas spp. in the present study is high and is also 

comparably similar to the 75.8% reported from Egypt on a study on clinical samples [19]. Such multiple 

antibiotics resistant in Pseudomonas spp. has been attributed to combination of acquisition of resistance gene 

through genetic exchange and mutation, as well as physiological mechanism such as the possession of specific 

protein, poor membrane permeability, biofilm formation and efflux pumps [33-35]. 

5. CONCLUSION 

 The high prevalence of antibiotics resistance as well as multidrug resistance strains of Pseudomonas 

spp. in this study is an indication that both the poultry droppings and piggery dung can serves as a reservoir 

for the development and dissemination of clinically significant antibiotics resistant among bacterial 

pathogens. Therefore, cautious efforts should be made to limit the misuse of  antibiotics in animal husbandry 

and proper discharge of livestock waste into the environment should be enforce in other reduce emergence of  

antibiotics resistant organisms that can lead to outbreak of infection by antibiotics resistant bacteria.  
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