Food safety management: preventive strategies and control of pathogenic microorganisms in food

  • Pedro Henrique Mainardi São Paulo State University Júlio de Mesquita Filho (UNESP), Institute of Biosciences, Department of General and Applied Biology, Rio Claro, SP, Brazil
  • Ederio Dino Bidoia São Paulo State University Júlio de Mesquita Filho (UNESP), Institute of Biosciences, Department of General and Applied Biology, Rio Claro, SP, Brazil
Keywords: Disease prevention, Food chain management, Food security initiatives, Foodborne illnesses, Global food security, Public health concerns


Food security is a paramount concern worldwide, as the consumption of food contaminated by pathogenic microorganisms can result in serious risks to human health. The presence of bacteria, fungi, and other potentially harmful microorganisms in food is a reality that demands rigorous preventive and control measures to ensure the quality and safety of food products. In this context, this review addresses food safety management as a preventive and control measure for pathogenic microorganisms in food, aiming to safeguard public health and ensure product quality. The article discusses the importance of strict hygienic practices throughout the food chain, from production to consumption, and analyzes predominant pathogenic microorganisms that can cause foodborne illnesses. The study highlights the relevance of conventional and advanced techniques for microbiological identification as effective tools for accurate and rapid detection of microorganisms in food. Key elements such as temperature, pH, water activity, and additives are emphasized as crucial in inhibiting microbial proliferation. The implementation of quality management systems, notably the Hazard Analysis and Critical Control Points (HACCP) system, and collaboration among various stakeholders are identified as essential to ensuring food safety. The importance of consumer education regarding safe food handling and storage practices is also emphasized. The conclusion emphasizes the central significance of food safety management as a foundation for population health and well-being, reinforcing that synergy and shared responsibility are indispensable pillars to ensure the supply of safe and healthy food for human consumption.



Download data is not yet available.


1. Vågsholm I, Arzoomand NS, Boqvist S. Food security, safety, and sustainability - getting the trade-offs right. Front Sustain Food Syst. 2020; 4: 1-14.
2. Bhunia AK. Introduction to Foodborne Pathogens. In: Foodborne Microbial Pathogens. New York, NY, Springer New York; 2018: 1-23.
3. Hammond ST, Brown JH, Burger JR, Flanagan TP, Fristoe TS, Mercado-Silva N, et al. Food spoilage, storage, and transport: Implications for a sustainable future. Bioscience. 2015; 65(8): 758-768.
4. Tuglo LS, Agordoh PD, Tekpor D, Pan Z, Agbanyo G, Chu M. Food safety knowledge, attitude, and hygiene practices of street-cooked food handlers in North Dayi District, Ghana. Environ Health Prev Med. 2021; 26(54): 1-13.
5. Do Prado PC, Matias CL, Goulart JQ, Pinto AT. Most involved microorganisms in foodborne diseases outbreaks: A systematic review. Braz J Dev. 2021; 7(11): 106900-106916.
6. Vidyadharani G, Vijaya Bhavadharani HK, Sathishnath P, Ramanathan S, Sariga P, Sandhya A, et al. Present and pioneer methods of early detection of food borne pathogens. J Food Sci Technol. 2022; 59(6): 2087-2107.
7. Peleg M. A new look at models of the combined effect of temperature, pH, water activity, or other factors on microbial growth rate. Food Eng Rev. 2022; 14(1): 31-44.
8. Nummer B, Gump D, Wells S, Zimmerman S, Montalbano A. Hazard analysis and critical control points (HACCP). In: Regulatory Foundations for the Food Protection Professional. New York, NY, Springer New York; 2015: 163-178.
9. Gemen R, Breda J, Coutinho D, Fernández Celemín L, Khan S, Kugelberg S, et al. Stakeholder engagement in food and health innovation research programming - key learnings and policy recommendations from the INPROFOOD project. Nutr Bull. 2015; 40(1): 54-65.
10. Karabasil N, Bošković T, Dimitrijević M, Vasilev D, Đorđević V, Lakićević B, et al. Food safety - the roles and responsibilities of different sectors. IOP Conf Ser Earth Environ Sci. 2017; 85(1): 012023.
11. Meneguel CR de A, Hernández-Rojas RD, Mateos MR. The synergy between food and agri-food suppliers, and the restaurant sector in the World Heritage City of Córdoba (Spain). J Ethn Foods. 2022; 9(11): 1-13.
12. Milton A, Mullan B. Consumer food safety education for the domestic environment: a systematic review. Br Food J. 2010; 112(9): 1003-1022.
13. Rajapaksha P, Elbourne A, Gangadoo S, Brown R, Cozzolino D, Chapman J. A review of methods for the detection of pathogenic microorganisms. Analyst. 2019; 144(2): 396-411.
14. Cavalheiro TOS, Kozusny-Andreani DI. Avaliação dos microrganismos viáveis potencialmente patogênicos em bioaerossóis em uma unidade de terapia intensiva: evaluation of potentially pathogenic viable microorganisms in bioaerosols of an intensive care unit. Rev Contexto Saúde. 2021; 21(43): 256-270.
15. Abebe E, Gugsa G, Ahmed M. Review on major food-borne zoonotic bacterial pathogens. J Trop Med. 2020; 2020(1): 1-19.
16. World Health Organization. Food safety. Retrieved August 2023 from 2022.
17. Elbediwi M, Shi D, Biswas S, Xu X, Yue M. Changing patterns of Salmonella enterica serovar Rissen from humans, food animals, and animal-derived foods in China, 1995-2019. Front Microbiol. 2021; 12: 1-9.
18. Ehuwa O, Jaiswal AK, Jaiswal S. Salmonella, food safety and food handling practices. Foods. 2021;10(5): 907.
19. Giannella RA. Salmonella. In: Baron S, ed. Medical Microbiology. 4th ed. Galveston, TX, University of Texas Medical Branch at Galveston; 1996.
20. Goldberg MB, Rubin RH. The spectrum of salmonella infection. Infect Dis Clin North Am. 1988; 2(3): 571-598.
21. Chekabab SM, Paquin-Veillette J, Dozois CM, Harel J. The ecological habitat and transmission of Escherichia coliO157:H7. FEMS Microbiol Lett. 2013; 341(1): 1-12.
22. Abebe E, Gugsa G, Ahmed M, Awol N, Tefera Y, Abegaz S, et al. Occurrence and antimicrobial resistance pattern of E. coli O157:H7 isolated from foods of Bovine origin in Dessie and Kombolcha towns, Ethiopia. PLoS Negl Trop Dis. 2023; 17(1): e0010706.
23. Huang W-C, Hashimoto M, Shih Y-L, Wu C-C, Lee M-F, Chen Y-L, et al. Peptidoglycan endopeptidase spr of uropathogenic Escherichia coli contributes to kidney infections and competitive fitness during bladder colonization. Front Microbiol. 2020; 11: 586214.
24. Silva J, Leite D, Fernandes M, Mena C, Gibbs PA, Teixeira P. Campylobacter spp. as a Foodborne Pathogen: A Review. Front Microbiol. 2011; 2: 1-12.
25. Kreling V, Falcone FH, Kehrenberg C, Hensel A. Campylobacter sp.: Pathogenicity factors and prevention methods—new molecular targets for innovative antivirulence drugs? Appl Microbiol Biotechnol. 2020; 104(24): 10409-10436.
26. dos Santos JS, Biduski B, dos Santos LR. Listeria monocytogenes: health risk and a challenge for food processing establishments. Arch Microbiol. 2021; 203(10): 5907-5919.
27. Donovan S. Listeriosis: A rare but deadly disease. Clin Microbiol Newsl. 2015; 37(17): 135-140.
28. Soares TS. Rombencefalite por listeria monocytogenes: revisão da literatura e discussão de dois casos clínicos representativos (Doctoral dissertation). 2020.
29. Al Ohaly R, Ranganath N, Saffie MG, Shroff A. Listeria spondylodiscitis: an uncommon etiology of a common condition; a case report. BMC Infect Dis. 2020; 20(559): 1-4.
30. García S, Heredia N. Clostridium perfringens: A Dynamic Foodborne Pathogen. Food Bioproc Tech. 2011; 4(4): 624-630.
31. Schalch B, Sperner B, Eisgruber H, Stolle A. Molecular methods for the analysis of Clostridium perfringens relevant to food hygiene. FEMS Immunol Med Microbiol. 1999; 24(3): 281-286.
32. Schneider KR, Goodrich-Schneider R, Hubbard MA, Richardson S. Preventing Foodborne Illness Associated with Clostridium perfringens. Food Science and Human Nutrition Department, Florida Cooperative Extension Service, IFAS, University of Florida. 2015; 6: 1-5.
33. Brynestad S, Granum PE. Clostridium perfringens and foodborne infections. Int J Food Microbiol. 2002; 74(3): 195-202.
34. Fetsch A, Johler S. Staphylococcus aureus as a foodborne pathogen. Curr Clin Microbiol Rep. 2018; 5(2): 88-96.
35. Clegg J, Soldaini E, McLoughlin RM, Rittenhouse S, Bagnoli F, Phogat S. Staphylococcus aureus vaccine research and development: The past, present and future, including novel therapeutic strategies. Front Immunol. 2021; 12: 705360.
36. Danso EK, Asare P, Otchere ID, Akyeh LM, Asante-Poku A, Aboagye SY, et al. A molecular and epidemiological study of Vibrio cholerae isolates from cholera outbreaks in southern Ghana. PLoS One. 2020; 15(7): e0236016.
37. Montero DA, Vidal RM, Velasco J, George S, Lucero Y, Gómez LA, et al. Vibrio cholerae, classification, pathogenesis, immune response, and trends in vaccine development. Front Med (Lausanne). 2023;10: 1155751.
38. Madigan MT, Martinko JM, Dunlap PV, Clark DP. Brock biology of microorganisms 12th edn. Int. Microbiol. 2008; 11(1).
39. Tortora GJ, Funke BR, Case CL. Microbiology: An Introduction, Books a la Carte Edition. Benjamin-Cummings; 2015.
40. Usman M, Ho-Plágaro T, Frank HER, Calvo-Polanco M, Gaillard I, Garcia K, et al. Mycorrhizal symbiosis for better adaptation of trees to abiotic stress caused by climate change in temperate and boreal forests. Front For Glob Chang. 2021; 4: 742392.
41. Liew W-P-P, Mohd-Redzwan S. Mycotoxin: Its impact on gut health and Microbiota. Front Cell Infect Microbiol. 2018; 8: 60.
42. Pandey AK, Samota MK, Kumar A, Silva AS, Dubey NK. Fungal mycotoxins in food commodities: present status and future concerns. Front Sustain Food Syst. 2023; 7: 1162595.
43. Rahi S, Choudhari P, Ghormade V. Aflatoxin and Ochratoxin A Detection: Traditional and Current Methods. In: Advancing Frontiers in Mycology & Mycotechnology: Basic and Applied Aspects of Fungi. Springer, Singapore, 2019: 377-404.
44. Mackay N, Marley E, Leeman D, Poplawski C, Donnelly C. Analysis of aflatoxins, fumonisins, deoxynivalenol, ochratoxin A, zearalenone, HT-2, and T-2 toxins in animal feed by LC-MS/MS using cleanup with a multi-antibody immunoaffinity column. J AOAC Int. 2022; 105(5): 1330-1340.
45. Mamo FT, Abate BA, Zheng Y, Nie C, He M, Liu Y. Distribution of Aspergillus fungi and recent aflatoxin reports, health risks, and advances in developments of biological mitigation strategies in China. Toxins (Basel). 2021; 13(10): 678.
46. Kumar A, Pathak H, Bhadauria S, Sudan J. Aflatoxin contamination in food crops: causes, detection, and management: a review. Food Prod Process and Nutr. 2021; 3(17): 1-9.
47. Abrehame S, Manoj VR, Hailu M, Chen Y-Y, Lin Y-C, Chen Y-P. Aflatoxins: Source, detection, clinical features and prevention. Processes (Basel). 2023; 11(1): 204.
48. Chen W, Li C, Zhang B, Zhou Z, Shen Y, Liao X, et al. Advances in biodetoxification of ochratoxin A-A review of the past five decades. Front Microbiol. 2018; 9: 1386.
49. Scudamore KA. Prevention of ochratoxin A in commodities and likely effects of processing fractionation and animal feeds. Food Addit Contam. 2005; 22(sup1): 17-25.
50. Leitão AL. Occurrence of ochratoxin A in coffee: Threads and solutions - A mini-review. Beverages. 2019; 5(2): 36.
51. Hibi D, Suzuki Y, Ishii Y, Jin M, Watanabe M, Sugita-Konishi Y, et al. Site-specific in vivo mutagenicity in the kidney of gpt delta rats given a carcinogenic dose of ochratoxin A. Toxicol Sci. 2011; 122(2): 406-414.
52. Khoi C-S, Chen J-H, Lin T-Y, Chiang C-K, Hung K-Y. Ochratoxin A-induced nephrotoxicity: Up-to-date evidence. Int J Mol Sci. 2021; 22(20): 11237.
53. Ono EYS, Biazon L, Silva M da, Vizoni É, Sugiura Y, Ueno Y, et al. Fumonisins in corn: correlation with Fusarium sp. count, damaged kernels, protein and lipid content. Braz Arch Biol Technol. 2006; 49(1): 63-71.
54. Mobashar M. Mycotoxins incidence in animal feeds, their prevention and control measures. One Health Triad, Unique Scientific Publishers, Faisalabad, Pakistan. 2023; 2: 242-250.
55. Kamle M, Mahato DK, Devi S, Lee KE, Kang SG, Kumar P. Fumonisins: Impact on agriculture, food, and human health and their management strategies. Toxins (Basel). 2019; 11(6): 328.
56. Li Y, Gao H, Wang R, Xu Q. Deoxynivalenol in food and feed: Recent advances in decontamination strategies. Front Microbiol. 2023; 14: 1141378.
57. Luo K, Guo J, He D, Li G, Ouellet T. Deoxynivalenol accumulation and detoxification in cereals and its potential role in wheat-Fusarium graminearum interactions. Abiotech. 2023; 4(2): 155-171.
58. Ruhnau D, Hess C, Grenier B, Doupovec B, Schatzmayr D, Hess M, et al. The mycotoxin deoxynivalenol (DON) promotes Campylobacter jejuni multiplication in the intestine of broiler chickens with consequences on bacterial translocation and gut integrity. Front Vet Sci. 2020; 7: 573894.
59. Nahle S, El Khoury A, Atoui A. Current status on the molecular biology of zearalenone: its biosynthesis and molecular detection of zearalenone producing Fusarium species. Eur J Plant Pathol. 2021; 159(2): 247-258.
60. Ropejko K, Twarużek M. Zearalenone and its metabolites - general overview, occurrence, and toxicity. Toxins (Basel). 2021; 13(1): 35.
61. Zhou J, Zhao L, Huang S, Liu Q, Ao X, Lei Y, et al. Zearalenone toxicosis on reproduction as estrogen receptor selective modulator and alleviation of zearalenone biodegradative agent in pregnant sows. J Anim Sci Biotechnol. 2022; 13(36): 1-11.
62. Kimanya ME. The health impacts of mycotoxins in the eastern Africa region. Curr Opin Food Sci. 2015; 6: 7-11.
63. Marc RA. Implications of mycotoxins in food safety. In: Marc RA, ed. Mycotoxins and Food Safety - Recent Advances. London, England: IntechOpen; 2022.
64. Lorenz N, Dänicke S, Edler L, Gottschalk C, Lassek E, Marko D, et al. A critical evaluation of health risk assessment of modified mycotoxins with a special focus on zearalenone. Mycotoxin Res. 2019; 35(1): 27-46.
65. Garcia LS. Classification of human parasites, vectors, and similar organisms. Clin Infect Dis. 1999; 29(4): 734-736.
66. Li J, Wang Z, Karim MR, Zhang L. Detection of human intestinal protozoan parasites in vegetables and fruits: a review. Parasit Vectors. 2020; 13(1): 1-19.
67. Barbosa RL, National Agricultural Laboratory of Brazil (Lanagro-SP), Ministry of Agriculture, Liverstock and Food Supply, Campinas, São Paulo, Brazil. Perspectives on Foodborne Parasites. Adv Food Technol Nutr Sci. 2015; 1(4): 82-83.
68. Pereira KS, Franco RMB, Leal DAG. Transmission of Toxoplasmosis (Toxoplasma gondii) by Foods. In: Advances in Food and Nutrition Research. Elsevier; 2010: 1-19.
69. Rostami A, Riahi SM, Contopoulos-Ioannidis DG, Gamble HR, Fakhri Y, Shiadeh MN, et al. Acute Toxoplasma infection in pregnant women worldwide: A systematic review and meta-analysis. PLoS Negl Trop Dis. 2019; 13(10): e0007807.
70. Gorcea M, Neculicioiu V, Junie L. Cryptosporidium and Giardia-an overview. Sci Parasitol. 2020; 21(1-2): 18-24.
71. Ma J, Feng Y, Hu Y, Villegas EN, Xiao L. Human infective potential of Cryptosporidium spp., Giardia duodenalis and Enterocytozoon bieneusi in urban wastewater treatment plant effluents. J Water Health. 2016; 14(3): 411-423.
72. Li T-T, Wang J-L, Zhang N-Z, Li W-H, Yan H-B, Li L, et al. Rapid and visual detection of Trichinella spp. Using a lateral flow strip-based recombinase polymerase amplification (LF-RPA) assay. Front Cell Infect Microbiol. 2019; 9(1): 1-8.
73. Ruenchit P, Reamtong O, Khowawisetsut L, Adisakwattana P, Chulanetra M, Kulkeaw K, et al. Peptide of Trichinella spiralis Infective Larval Extract That Harnesses Growth of Human Hepatoma Cells. Front Cell Infect Microbiol. 2022; 12: 882608.
74. Eichenberger RM, Thomas LF, Gabriël S, Bobić B, Devleesschauwer B, Robertson LJ, et al. Epidemiology of Taenia saginata taeniosis/cysticercosis: a systematic review of the distribution in East, Southeast and South Asia. Parasit Vectors. 2020; 13(1): 1-11.
75. Rodríguez-Hidalgo R, Carpio A, Van den Enden E, Benítez-Ortiz W. Monitoring treatment of Taenia solium- neurocysticercosis by detection of circulating antigens: a case report. BMC Neurol. 2019; 19(1): 1-5.
76. Villarreal LP. Are viruses alive? Scient Am. 2004; 291(6): 100-105.
77. Rodríguez-Lázaro D, Cook N, Ruggeri FM, Sellwood J, Nasser A, Nascimento MSJ, et al. Virus hazards from food, water and other contaminated environments. FEMS Microbiol Rev. 2012; 36(4): 786-814.
78. da Silva Ribeiro de Andrade J, Fumian TM, Leite JPG, de Assis MR, Fialho AM, Mouta S, et al. Norovirus GII.17 associated with a foodborne acute gastroenteritis outbreak in Brazil, 2016. Food Environ Virol. 2018; 10(2): 212-216.
79. Morillo SG, Luchs A, Cilli A, do Carmo Sampaio Tavares Timenetsky M. Rapid detection of Norovirus in naturally contaminated food: Foodborne gastroenteritis outbreak on a cruise ship in Brazil, 2010. Food Environ Virol. 2012; 4(3): 124-129.
80. Takuissu GR, Kenmoe S, Ebogo-Belobo JT, Kengne-Ndé C, Mbaga DS, Bowo-Ngandji A, et al. Occurrence of hepatitis A virus in water matrices: A systematic review and meta-analysis. Int J Environ Res Public Health. 2023; 20(2): 1054.
81. Patterson J, Abdullahi L, Hussey GD, Muloiwa R, Kagina BM. A systematic review of the epidemiology of hepatitis A in Africa. BMC Infect Dis. 2019; 19(1): 1-15.
82. Du Y, Chen C, Zhang X, Yan D, Jiang D, Liu X, et al. Global burden and trends of rotavirus infection-associated deaths from 1990 to 2019: an observational trend study. Virol J. 2022; 19(1): 1-10.
83. LeClair CE, McConnell KA. Rotavirus. StatPearls Publishing; 2023.
84. Mercedes González M, Padilla Sanabria L, Castaño-Osorio JC. Hepatitis E Virus: A review of the current status and perspectives. Infection. 2021; 26(2): 181-188.
85. Wu C, Wu X, Xia J. Hepatitis E virus infection during pregnancy. Virol J. 2020; 17(1): 1-11.
86. Rouhani S, Peñataro Yori P, Paredes Olortegui M, Lima AA, Ahmed T, Mduma ER, et al. The epidemiology of Sapovirus in the etiology, risk factors, and interactions of Enteric infection and malnutrition and the consequences for child health and development study: Evidence of protection following natural infection. Clin Infect Dis. 2022; 75(8): 1334-1341.
87. Rather IA, Koh WY, Paek WK, Lim J. The sources of chemical contaminants in food and their health implications. Front Pharmacol. 2017; 8: 830.
88. Garvey M. Food pollution: a comprehensive review of chemical and biological sources of food contamination and impact on human health. Nutrire. 2019; 44(1): 1-13.
89. Manju G, Mishra SK. Microbiological environmental monitoring in food processing. Indian Food Industry Mag. 2021; 3(2): 46-56.
90. Bartz S, Hessel CT, Rodrigues R de Q, Possamai A, Perini FO, Jacxsens L, et al. Insights in agricultural practices and management systems linked to microbiological contamination of lettuce in conventional production systems in Southern Brazil. Int J Food Contam. 2015; 2(1): 1-13.
91. Nicolopoulou-Stamati P, Maipas S, Kotampasi C, Stamatis P, Hens L. Chemical pesticides and human health: The urgent need for a new concept in agriculture. Front Public Health. 2016; 4: 1-8.
92. Al Mamun AHMS, Hsan K, Sarwar MS, Siddique MRF. Knowledge and personal hygiene practice among food handlers in public university campus of Bangladesh. Int J Community Med Public Health. 2019; 6(8): 3211.
93. Waring B, Neumann M, Prentice IC, Adams M, Smith P, Siegert M. Forests and decarbonization - roles of natural and planted forests. Front For Glob Chang. 2020; 3: 1-6.
94. Mtewa AG, Chikowe I, Kumar S, Ngwira KJ, Lampiao F. Good manufacturing practices and safety issues in functional food industries. In: Functional Foods and Nutraceuticals. Cham: Springer; 2020.
95. Walia A, Mehra R, Kumar N, Singh TP, Kumar H. Good manufacturing practices and safety issues in functional foods and nutraceuticals. In: Bioactive Components. Singapore: Springer Nature Singapore; 2023.
96. 096 Varghese SM, Parisi S, Singla RK, Begum ASA. Food safety and quality control in food industry. In: Trends in Food Chemistry, Nutrition and Technology in Indian Sub-Continent. Cham: Springer; 2022.
97. Bitencourt de Morais Valentim JM, Fagundes TR, Okamoto Ferreira M, Lonardoni Micheletti P, Broto Oliveira GE, Cremer Souza M, et al. Monitoring residues of pesticides in food in Brazil: A multiscale analysis of the main contaminants, dietary cancer risk estimative and mechanisms associated. Front Public Health. 2023;11: 1130893.
98. Tompkin RB. Microbiological testing in food safety management. Springer Science & Business Media; 2002.
99. Wilson ML. General principles of specimen collection and transport. Clin Infect Dis. 1996; 22(5): 766-777.
100. Kuiper HA, Paoletti C. Food and feed safety assessment: The importance of proper sampling. J AOAC Int. 2015; 98(2): 252-258.
101. Otles S, Ozyurt VH. Sampling and sample preparation. In: Handbook of Food Chemistry. Springer; 2015.
102. Jasson V, Jacxsens L, Luning P, Rajkovic A, Uyttendaele M. Alternative microbial methods: An overview and selection criteria. Food Microbiol. 2010; 27(6): 710-730.
103. Harrigan WF. Laboratory methods in food microbiology. Gulf Professional Publishing; 1998.
104. Váradi L, Luo JL, Hibbs DE, Perry JD, Anderson RJ, Orenga S, et al. Methods for the detection and identification of pathogenic bacteria: past, present, and future. Chem Soc Rev. 2017; 46(16): 4818-4832.
105. Franco-Duarte R, Černáková L, Kadam S, S. Kaushik K, Salehi B, Bevilacqua A, et al. Advances in chemical and biological methods to identify microorganisms - from past to present. Microorganisms. 2019; 7(5): 130.
106. Pan H, Zhang Y, He G-X, Katagori N, Chen H. A comparison of conventional methods for the quantification of bacterial cells after exposure to metal oxide nanoparticles. BMC Microbiol. 2014; 14(1): 1-11.
107. Zhang J, Li C, Rahaman MM, Yao Y, Ma P, Zhang J, et al. A comprehensive review of image analysis methods for microorganism counting: from classical image processing to deep learning approaches. Artif Intell Rev. 2022; 55(4): 2875-2944.
108. Gill A. The importance of bacterial culture to food microbiology in the age of genomics. Front Microbiol. 2017; 8: 1-6.
109. Braissant O, Astasov-Frauenhoffer M, Waltimo T, Bonkat G. A review of methods to determine viability, vitality, and metabolic rates in microbiology. Front Microbiol. 2020; 11: 1-25.
110. Gasanov U, Hughes D, Hansbro PM. Methods for the isolation and identification of Listeria spp. and Listeria monocytogenes: a review. FEMS Microbiol Rev. 2005; 29(5): 851-875.
111. Di Febo T, Schirone M, Visciano P, Portanti O, Armillotta G, Persiani T, et al. Development of a capture ELISA for rapid detection of salmonella enterica in food samples. Food Anal Methods. 2019; 12(2): 322-330.
112. Chin NA, Salihah NT, Shivanand P, Ahmed MU. Recent trends and developments of PCR-based methods for the detection of food-borne Salmonella bacteria and Norovirus. J Food Sci Technol. 2022; 59(12): 4570-4582.
113. van Pelt-Verkuil E, te Witt R. Principles of PCR. In: Molecular Diagnostics. Singapore: Springer Singapore; 2019.
114. Kralik P, Ricchi M. A basic guide to real time PCR in microbial diagnostics: Definitions, parameters, and everything. Front Microbiol. 2017; 8: 1-9.
115. Law JW-F, Ab Mutalib N-S, Chan K-G, Lee L-H. Rapid methods for the detection of foodborne bacterial pathogens: principles, applications, advantages and limitations. Front Microbiol. 2015; 5: 1-19.
116. Fan W, Gao X-Y, Li H-N, Guo W-P, Li Y-Y, Wang S-W. Rapid and simultaneous detection of Salmonella spp., Escherichia coli O157:H7, and Listeria monocytogenes in meat using multiplex immunomagnetic separation and multiplex real-time PCR. Eur Food Res Technol. 2022; 248(3): 869-879.
117. Cao Y, Fanning S, Proos S, Jordan K, Srikumar S. A review on the applications of next generation sequencing technologies as applied to food-related microbiome studies. Front Microbiol. 2017; 8: 274032.
118. Solieri L, Dakal TC, Giudici P. Next-generation sequencing and its potential impact on food microbial genomics. Ann Microbiol. 2013; 63(1): 21-37.
119. Rahi P, Prakash O, Shouche YS. Matrix-assisted laser desorption/ionization time-of-flight mass-spectrometry (MALDI-TOF MS) based microbial identifications: Challenges and scopes for microbial ecologists. Front Microbiol. 2016; 7: 1-12.
120. Valente GLC, Souza MR de. Utilização da espectrometria de massa MALDI-TOF para avaliação microbiológica de leite e derivados. Rev Inst Laticínios Cândido Tostes. 2019; 74(3): 207-218.
121. Šebela M. Biomolecular profiling by MALDI-TOF mass spectrometry in food and beverage analyses. Int J Mol Sci. 2022; 23(21): 13631.
122. Saravanan A, Kumar PS, Hemavathy RV, Jeevanantham S, Kamalesh R, Sneha S, et al. Methods of detection of food-borne pathogens: a review. Environ Chem Lett. 2021; 19(1): 189-207.
123. Ali AA, Altemimi AB, Alhelfi N, Ibrahim SA. Application of biosensors for detection of pathogenic food bacteria: A review. Biosensors (Basel). 2020; 10(6): 58.
124. Zhang L, Chen F, Zeng Z, Xu M, Sun F, Yang L, et al. Advances in metagenomics and its application in environmental microorganisms. Front Microbiol. 2021; 12: 1-15.
125. Nagarajan R. Nanoparticles: Building Blocks for Nanotechnology. In: ACS Symposium Series. Washington, DC: American Chemical Society; 2008.
126. Elliott CN, Becerra MC, Bennett JC, Graham L, Silvero C. MJ, Hallett-Tapley GL. Facile synthesis of antibiotic-functionalized gold nanoparticles for colorimetric bacterial detection. RSC Adv. 2021; 11(23): 14161-14168.
127. Mavani NR, Ali JM, Othman S, Hussain MA, Hashim H, Rahman NA. Application of artificial intelligence in food industry - a guideline. Food Eng Rev. 2022; 14(1): 134-175.
128. Xiao Z, Wang J, Han L, Guo S, Cui Q. Application of machine vision system in food detection. Front Nutr. 2022; 9: 1-7.
129. Wang Z, Hirai S, Kawamura S. Challenges and opportunities in robotic food handling: A review. Front Robot AI. 2022; 8: 1-12.
130. Rolfe C, Daryaei H. Intrinsic and extrinsic factors affecting microbial growth in food systems. In: Food Engineering Series. Cham: Springer; 2020.
131. Abatenh E, Gizaw B, Tsegaye Z. Contamination in a microbiological laboratory. Int J Res Stud Biosci. 2018; 6(4): 7-13.
132. El-Sayed AS, Ibrahim H, Farag MA. Detection of potential microbial contaminants and their toxins in fermented dairy products: A comprehensive review. Food Anal Methods. 2022; 15(7): 1880-1898.
133. Abdel-Aziz SM, Asker MMS, Keera AA, Mahmoud MG. Microbial food spoilage: Control strategies for shelf life extension. In: Microbes in Food and Health. Cham: Springer; 2016.
134. Mustafa IA, Mohammed HG, Alzubir MKA, Mohammed RA. Knowledge, attitude and practice of food handlers toward compliance with food safety measures in Hey algamaa and Hey alhuda Restaurants, SharqElneel locality December 2018-November 2019. Nile University, 2019.
135. da Vitória AG, de Souza Couto Oliveira J, de Almeida Pereira LC, de Faria CP, de São José JFB. Food safety knowledge, attitudes and practices of food handlers: A cross-sectional study in school kitchens in Espírito Santo, Brazil. BMC Public Health. 2021; 21(1): 1-10.
136. Coelho AÍ, Milagres RC, Martins JD, Azeredo RM, Santana ÂM. Contaminação microbiológica de ambientes e de superfícies em restaurantes comerciais. Ciência Saúde Coletiva. 2010; 15: 1597-1606.
137. Marriott NG, Gravani RB, Schilling MW. Principles of food sanitation. New York: Springer; 2006.
138. Salgado PR, Di Giorgio L, Musso YS, Mauri AN. Recent developments in smart food packaging focused on biobased and biodegradable polymers. Front Sustain Food Syst. 2021; 5: 1-30.
139. Chiozzi V, Agriopoulou S, Varzakas T. Advances, applications, and comparison of thermal (pasteurization, sterilization, and aseptic packaging) against non-thermal (ultrasounds, UV radiation, ozonation, high hydrostatic pressure) technologies in food processing. Appl Sci (Basel). 2022; 12(4): 2202.
140. López-Malo A, Alzamora SM. Water activity and microorganism control: Past and future. In: Food Engineering Series. Springer; 2015.
141. Coban HB. Organic acids as antimicrobial food agents: applications and microbial productions. Bioprocess Biosyst Eng. 2020; 43(4): 569-591.
142. Wicher EW, Hermosilla JL, Silva EC, Azollini W. Traceability for Food Safety: the case of a sugar factory and alcohol distillery plant. In: International Conference on Industrial Engineering and Operations Management-ICIEOM, Guimarães, Portugal 2012.
143. Majid I, Ahmad Nayik G, Mohammad Dar S, Nanda V. Novel food packaging technologies: Innovations and future prospective. J Saudi Soc Agric Sci. 2018; 17(4): 454-462.
144. Young I, Waddell L, Harding S, Greig J, Mascarenhas M, Sivaramalingam B, et al. A systematic review and meta-analysis of the effectiveness of food safety education interventions for consumers in developed countries. BMC Public Health. 2015; 15(1): 1-14.
145. Owusu-Apenten R, Vieira ER. Elementary Food Science. Cham: Springer; 2023.
146. Food and Agriculture Organization of the United Nations. Codex and Science. Retrieved August 2023, from 2023.
147. Food and Drug Administration. About FDA. Retrieved August 2023, from 2023.
148. Food and Agriculture Organization of the United Nations. The world is at a critical juncture. Retrieved August 2023, from 2021.
149. Awan S, Ahmed S, Ullah F, Nawaz A, Khan A, Uddin MI, et al. IoT with BlockChain: A futuristic approach in agriculture and food supply chain. Wirel Commun Mob Comput. 2021; 2021: 1-14.
150. Kumar I, Rawat J, Mohd N, Husain S. Opportunities of artificial intelligence and machine learning in the food industry. J Food Qual. 2021; 2021: 1-10.
How to Cite
Mainardi, P.; Bidoia, E. Food Safety Management: Preventive Strategies and Control of Pathogenic Microorganisms in Food. European Journal of Biological Research 2024, 14, 13-32.
Review Articles