Accumulation of heavy metals in soil: sources, toxicity, health impacts, and remediation by earthworms
Abstract
Heavy metals pose serious threats to both individuals and the environment, and there is growing global concern over potentially harmful elements. Heavy metal contamination can have a significant impact on the soil ecosystem's functioning. This requires convenient, efficient, and beneficial remediation approaches. The “ecosystem engineer”, earthworms, can modify and enhance soil quality. The ability of earthworms to bioaccumulate metals in substantial amounts in their tissues makes them potentially beneficial as an ecological indicator of soil pollution. Vermiremediation is a new discipline of research in which earthworms are used to detoxify organically contaminated soils. Earthworms have an influential metabolic system, and their gut bacteria and chloragocyte cells play a significant role in their tendency to valorize and detoxify heavy metals. Remediation by earthworms can be considered sustainable, efficient, and ecologically beneficial. The present review provides a wide range of information on earthworms' appropriateness as prospective species for bioremediation and detoxification of toxic metal-contaminated soil to mitigate human health and environmental problems.
Downloads
References
2. Alengebawy A, Abdelkhalek ST, Qureshi SR, Wang MQ. Heavy Metals and Pesticides Toxicity in Agricultural Soil and Plants: Ecological Risks and Human Health Implications. Toxics. 2021; 9(3): 42.
3. Sidhu GPS. Heavy metal toxicity in soils: sources, remediation technologies and challenges. Adv Plants Agric Res. 2016; 5(1): 445‒446.
4. Li C, Zhou K, Qin W, Tian C, Qi M, Yan X, et al. A review on heavy metals contamination in soil: effects, sources, and remediation techniques. Soil Sediment Contamin Int J. 2019; 28(4): 380-394.
5. Wuana RA, Okieimen FE. Heavy metals in contaminated soils: a review of sources, chemistry, risks and best available strategies for remediation. Isrn Ecol. 2011; 2011: 2090-4614.
6. Karaca A, Cetin SC, Turgay OC, Kizilkaya R. Effects of Heavy Metals on Soil Enzyme Activities. In: Sherameti I, Varma A (Eds), Soil Heavy Metals, Soil Biology, Heidelberg. 2010; 19: 237-265.
7. Ashraf R, Ali TA. Effect of heavy metals on soil microbial community and mung beans seed germination. Pakistan J Bot. 2007; 39(2): 629-636.
8. Kuźniar A, Banach A, Stępniewska Z, Frąc M, Oszust K, Gryta A, et al. Community-level physiological profiles of microorganisms inhabiting soil contaminated with heavy metals. Int Agrophysics. 2018; 32(1): 101-109.
9. Xie Y, Fan J, Zhu W, Amombo E, Lou Y, Chen L, et al. Effect of Heavy Metals Pollution on Soil Microbial Diversity and Bermudagrass Genetic Variation. Front Plant Sci. 2016; 7, 755.
10. Iheme PO, Ajayi AT, Ayo-Komolafe KO, Njoku KL. Vermiremediation Potentials of Lumbricus terrestris and Eudrilus euginae in Heavy Metal Contaminated Soil from Mechanic, Welder workshop and Metallic Dumpsite. Nig J Biotech. 2021; 38(2): 118-133.
11. Sinha RK, Chauhan K, Valani D, Chandran V, Soni BK, Patel V. Earthworms: Charles Darwin's ‘Unheralded Soldiers of Mankind’: Protective and productive for man and environment. J Environ Protect. 2010; 1: 251-260.
12. Singh K, Fatima N. Role of earthworms in heavy metal accumulation. Biospectra. 2019; 14(2): 21-36.
13. Ujah II, Onwurah INE, Ubani SC, Okeke DO, Okpashi VE. Assessing Bioaccumulation in Earthworms. J Environ Sci Public Health. 2017; 1(4): 224-227.
14. Singh J, Singh S, Vig AP, Bhat SA, Hundal SS, Yin R, et al. Conventional farming reduces the activity of earthworms: assessment of genotoxicity test of soil and vermicast. Agric Nat Resour. 2018; 52: 366-370.
15. Chen X, Wang X, Gu X, Jiang Y, Ji R. Oxidative stress responses and insights into the sensitivity of the earthworms Metaphire guillelmi and Eisenia fetida to soil cadmium. Sci Total Environ. 2017; 574: 300-306.
16. Wang K, Qiao Y, Li H, Huang C. Use of integrated biomarker response for studying the resistance strategy of the earthworm Metaphire californica in Cd contaminated field soils in Hunan Province, South China. Environ Pollut. 2020; 260, 114056.
17. Hobbelen PH, Koolhaas JE, van Gestel CA. Bioaccumulation of heavy metals in the earthworms Lumbricus rubellus and Aporrectodea caliginosa in relation to total and available metal concentrations in field soils. Environ Pollut. 2006; 144(2): 639-646.
18. Wang L, Zhang Y, Lian J, Chao J, Gao Y, Yang F, et al. Impact of fly ash and phosphatic rock on metal stabilization and bioavailability during sewage sludge vermicomposting. Bioresour Technol. 2013; 136: 281-287.
19. Jain K, Singh J, Chauhan LKS, Murthy RC, Gupta SK. Modulation of flyash induced genotoxicity in Vicia faba by vermicomposting. Ecotoxicol Environ Saf. 2004; 59: 89-94.
20. Srivastava R, Kumar D, Gupta SK. Bioremediation of municipal sludge by vermitechnology and toxicity assessment by Allium cepa. Bioresour Technol. 2005; 96: 1867-1871.
21. Ekperusi OA, Aigbodion IF. Bioremediation of heavy metals and petroleum hydrocarbons in diesel contaminated soil with the earthworm: Eudrilus eugeniae. Springer Plus. 2015; 4, 540.
22. Dada EO, Akinola MO, Owa SO, Dedeke GA, Aladesida AA, Omagboriaye FO, et al. Efficacy of Vermiremediation to Remove Contaminants from Soil. J Health Poll. 2021; 11(29): 210302.
23. Šrut M, Menke S, Höckner M, Sommer S. Earthworms and cadmium-Heavy metal resistant gut bacteria as indicators for heavy metal pollution in soils? Ecotoxicol Environ Saf. 2019; 171: 843-853.
24. Sanchez-Hernandez JC. Bioremediation of pesticide contaminated soils by using earthworms. Bioremediation of Agricultural Soils. (pp. 165-192). Boca Raton, FL: CRC Press, 2019.
25. Singh K, Fatima N. The Efficiency of Earthworms as a Biomarker for Environmental Pollution. Int J Biol Innov. 2022; 4(1): 104-112.
26. Shipley AE. In: The Cambridge Natural History. Harmer SF, Shipley AE (eds.). Codicote, England, 1970.
27. Kale RD. Earthworm Cinderella of Organic Farming. Prism Book Pvt Ltd, Bangalore, India. 1998; 70-88.
28. Boyle KE, Curry JP, Farrell EP. Influence of earthworms on soil properties and gross production in reclaimed cutover peat. Biol Fertil Soils. 1997; 25: 20-26.
29. Butt K. The effect of temperature on the intensive production of Lumbricus terrestris (Oligochaeta: Lumbricidae). Pedobiologia. 1991; 35: 257-264.
30. Saranraj P, Stella D. Vermicomposting and its importance in improvement of soil nutrients and agricultural crops. Novus Nat Sci Res. 2012; 1(1): 14-23.
31. Yuvaraj A, Govarthanan M, Karmegam N, Biruntha M, Kumar DS, Arthanari M, et al. Metallothionein dependent-detoxification of heavy metals in the agricultural field soil of industrial area: Earthworm as field experimental model system. Chemosphere. 2021; 267, 129240.
32. Maňáková B, Kuta J, Svobodová M, Hofman J. Effects of combined composting and vermicomposting of waste sludge on arsenic fate and bioavailability. J Hazard Mater. 2014; 280: 544-551.
33. Nannoni F, Rossi S, Protano G. Soil properties and metal accumulation by earthworms in the Siena urban area (Italy). Appl Soil Ecol. 2014; 77: 9-17.
34. Wang K, Qiao Y, Zhang H, Yue S, Li H, Ji X, et al. Bioaccumulation of heavy metals in earthworms from field contaminated soil in a subtropical area of China. Ecotoxicol Environ Saf. 2018; 148: 876-883.
35. Homa J, Klimek M, Kruk J, Cocquerelle C, Vandenbulcke F, Plytycz B. Metal-specific effects on metallothionein gene induction and riboflavin content in coelomocytes of Allolobophora chlorotica. Ecotoxicol Environ Saf. 2010; 73: 1937-1943.
36. Yuvaraj A, Karmegam N, Thangaraj R. Vermistabilization of paper mill sludge by an epigeic earthworm Perionyx excavatus: mitigation strategies for sustainable environmental management. Ecol Eng. 2018; 120: 187-197.
37. Kılıç GA. Histopathological and biochemical alterations of the earthworm (Lumbricus terrestris) as biomarker of soil pollution along Porsuk River Basin (Turkey). Chemosphere. 2011; 83: 1175-1180.
38. Sato M, Kondoh M. Recent studies on metallothionein: Protection against toxicity of heavy metals and oxygen free radicals. Tohoku J Exp Med. 2002; 196: 9-22.
39. Yuvaraj A, Karmegam N, Tripathi S, Kannan S, Thangaraj R. Environment friendly management of textile mill wastewater sludge using epigeic earthworms: bioaccumulation of heavy metals and metallothionein production. J Environ Manag. 2020; 254, 109813.
40. Zhang X, Yan L, Liu J, Zhang Z, Tan C. Removal of different kinds of heavy metals by novel PPG-nZVI beads and their application in simulated storm water infiltration facility. Appl Sci. 2019; 9, 4213.
41. Briffa J, Sinagra E, Blundell R. Heavy metal pollution in the environment and their toxicological effects on humans. Heliyon. 2020; 6(9), e04691.
42. Zhao H, Wu Y, Lan X, Yang Y, Wu X, Du L. Comprehensive assessment of harmful heavy metals in contaminated soil in order to score pollution level. Scient Rep. 2022; 12(1): 3552.
43. Amore JJD, Al-Abed SR, Scheckel KG, Ryan JA. Methods for speciation of metals in soils: a review. J Environ Quality. 2005; 34(5): 1707-1745.
44. Nicholson FA, Smith SR, Alloway BJ, Carlton-Smith C, Chambers BJ. An inventory of heavy metals inputs to agricultural soils in England and Wales. Sci Total Environ. 2003; 311: 205-219.
45. Zhang C. Using multivariate analyses and GIS to identify pollutants and their spatial patterns in urban soils in Gal-way, Ireland. Environ Pollut. 2006; 142: 501-511.
46. Kelepertzis E. Accumulation of heavy metals in agricultural soils of Mediterranean: insights from Argolida basin, Peloponnese, Greece. Geoderma. 2014; 221: 82-90.
47. Tóth G, Hermann T, Da Silva MR, Montanarella L. Heavy metals in agricultural soils of the European Union with implications for food safety. Environ Pollut. 2016; 88: 299-309.
48. Malik Z, Ahmad M, Abassi GH, Dawood M, Hussain A, Jamil M. Agrochemicals and soil microbes: inter-action for soil health, in Xenobiotics in the Soil Environment: Monitoring, Toxicity and Management. Cham: Springer International Publishing. 2017; pp. 139-152.
49. Alloway JB. Soil pollution and land contamination. In: Harrison RM (Ed). Pollution: Causes, effects and control. The Royal Society of Chemistry, Cambridge, 1995.
50. Akoto O, Ephraim JH, Darko G. Heavy metal pollution in surface soils in the vicinity of abundant raiway servicing workshop in Kumasi, Ghana. Int J Environ Res. 2008; 2(4): 359-364.
51. Yitagesu YH. Heavy Metal Pollutions in Soil: Sources, Speciation and Remediations; Review. Sch Int J Biochem. 2021; 4(6): 57-65.
52. Kumari S, Mishra A. Heavy Metal Contamination. Soil Contamination - Threats and Sustainable Solutions. doi: 10.5772/intechopen.93412, 2021.
53. Li YP, Wang SL, Nan ZR, Zang F, Sun HL, Zhang Q, et al. Accumulation, fractionation and health risk assessment of fluoride and heavy metals in soil-crop systems in northwest China. Sci Total Environ. 2019; 663: 307-314.
54. Chaoua S, Boussaa S, Gharmali AE, Boumezzough A. Impact of irrigation with wastewater on an accumulation of heavy metals in soil and crops in the region of Marrakech in Morocco. J Saudi Soc Agricult Sci. 2019; 18: 429-436.
55. Ma T, Zhang Y, Hu Q, Han M, Li X, Zhang Y, et al. Accumulation Characteristics and Pollution Evaluation of Soil Heavy Metals in Different Land Use Types: Study on the Whole Region of Tianjin. Int J Environ Res Public Health. 2022; 19, 10013.
56. Pikuła D, Stępień W. Effect of the Degree of Soil Contamination with Heavy Metals on Their Mobility in the Soil Profile in a Microplot Experiment. Agronomy. 2021; 11(5): 878.
57. Chen W, Cai Y, Zhu K, Wei J, Lu Y. Spatial heterogeneity analysis and source identification of heavy metals in soil: a case study of Chongqing, Southwest China. Chem Biol Technol Agric. 2022; 9, 50.
58. Ohiagu FO, Chikezie PC, Ahaneku CC, Chikezie CM. Human exposure to heavy metals: toxicity mechanisms and health implications. Material Sci Eng. 2022; 6(2):78‒87.
59. Rehman AU, Nazir S, Irshad R, Tahir K, Ur Rehman K, Ul Islam R, et al. Toxicity of heavy metals in plants and animals and their uptake by magnetic iron oxide nanoparticles. J Mol Liquids. 2021; 321: 114455.
60. Wu X, Cobbina SJ, Mao G, Xu H, Zhang Z, Yang L. A review of toxicity and mechanism of individual and mixtures of heavy metals in the environment. Environ Sci Pollut Res. 2016; 23: 8244- 8259.
61. Al-Lami AMA, Khudhaier SR, Aswad OA. Effects of heavy metals pollution on human health. Ann Trop Med Public Health. 2020; 23: 1-4.
62. Tsutsumi T, Ishihara A, Yamamoto A, Asaji H, Yamakawa S, Tokumura A. The potential protective role of lysophospholipid mediators in nephrotoxicity induced by chronically exposed cadmium. Food Chem Toxicol. 2014; 65: 52-62.
63. Bhattacharya PT, Misra SR, Hussain M. Nutritional aspects of essential trace elements in oral health and disease: An extensive review. Scientifica. 2016; 2016: 5464373.
64. Yang L, Li X, Chu Z, Ren Y, Zhang J. Distribution and genetic diversity of the microorganisms in the biofilter for the simultaneous removal of arsenic, iron and manganese from simulated groundwater. Bioresour Technol. 2014; 156: 384-388.
65. Oves M, Saghir Khan M, Huda Qari A, Nadeen Felemban M, Almeelbi T. Heavy Metals: Biological Importance and Detoxification Strategies. J Bioremediat Biodegrad. 2016; 7(2): 334.
66. Garrido S, Campo GMD, Esteller MV, Vaca R, Lugo J. Heavy metals in soil treated with sewage sludge composting, their effect on yield and uptake of broad bean seeds (Vicia faba L.). Water Air Soil Pollut. 2002; 166: 303-319.
67. Rascio N, Izzo FN. Heavy metal hyperaccumulating plants: How and why do they do it? And what makes them so interesting? Plant Sci. 2011; 180: 169-181.
68. Bakshi S, Banik C, He Z. The impact of heavy metal contamination on soil health, In: Managing soil health for sustainable agriculture (Reicosky, ed.). 2018; 2(8): 1-36.
69. Budovich LS. Effects of heavy metals in soil and plants on ecosystems and the economy. Caspian J Environ Sci. 2021; 19(5): 991-997.
70. Lamas GA, Navas-Acien A, Mark DB, Lee KL. Heavy Metals, Cardiovascular Disease, and the Unexpected Benefits of Chelation Therapy. J Am Coll Cardiol. 2016; 67: 2411-2418.
71. Ma Y, Egodawatta P, McGree J, Liu A, Goonetilleke A. Human health risk assessment of heavy metals in urban stormwater. Sci Total Environ. 2016; 557: 764-772.
72. Mahurpawar M. Effects of heavy metals on human health. Int J Res Granthaalayah. 2015; 3(9SE): 1-7.
73. Mudgal V, Madaan N, Mudgal A, Singh RB, Mishra S. Effect of Toxic Metals on Human Health. Open Nutraceut J. 2010; 3: 94-99.
74. Jyothi NR. Heavy Metal Sources and Their Effects on Human Health. Heavy Metals - Their Environmental Impacts and Mitigation. doi: 10.5772/intechopen.95370, 2021.
75. Aebeed AS, Sharif SA, Amer AH, Jibreel AM, Alsoaiti SF. Growth and Reproduction of the Earthworm After Exposure to Eisenia fetida Sub Lethal Concentration from Remilitine and Lead Mixture. Scient J Univ Benghazi. 2022; 35(1): 199-203.
76. Ali AA, Farag AA. (2022). The Toxic Influence of The Fungicide Remilitine and Chromium Ion on Reproduction of Earthworm, Eisnia feditia. Egypt Acad J Biol Sci. 2022; 14(2):173-181.
77. Shaheen SM, Tsadilas CD, Rinklebe J. A review of the distribution coefficients of trace elements in soils: Influence of sorption system, element characteristics, and soil colloidal properties. Adv Colloid Interface Sci. 2013; 201-202: 43-56.
78. Palansooriya KN, Shaheen SM, Chen SS, Tsang DCW, Hashimoto Y, Hou DY, et al. Soil amendments for immobilization of potentially toxic elements in contaminated soils: a critical review. Environ Int. 2020; 134, 105046.
79. Han B, Weatherley AJ, Mumford K, Bolan N, He JZ, Stevens GW, et al. Modification of naturally abundant resources for remediation of potentially toxic elements: a review. J Hazard Mater. 2021; 421, 126775.
80. Lermi A, Sunkari ED. Pollution and probabilistic human health risk assessment of potentially toxic elements in the soil-water-plant system in the Bolkar mining district, Niğde, south-central Turkey. Environ Sci Pollut. 2023; 30(10): 25080-25092.
81. Chelkha M, Yakkou L, Houida S, Raouane M, Amghar S, Campos-Herrera R, et al. New insights on the impact of earthworm extract on the growth of beneficial soil fungi: species-specific alteration of the nematophagous fungal growth and limitation of an entomopathogenic fungus. Turk J Zool. 2022; 46(6): 456-466.
82. Sinha RK, Bharambe G, Chaudhari U. Sewage treatment by vermifiltration with synchronous treatment of sludge by earthworms: a low-cost sustainable technology over conventional systems with potential for decentralization. Environmentalist. 2008; 28(4): 409-428.
83. Matscheko N, Lundstedt S, Svensson L, Harju J, Tysklind M. Accumulation and elimination of 16 polycyclic aromatic compounds in the earthworm (Eisenia fetida). Environ Toxicol Chem. 2002; 21: 1724-1729.
84. Slizovskiy IB, Kelsey JW. Soil sterilization affects aging-related sequestration and bioavailability of p, p′-DDE and anthracene to earthworms. Environ Pollut. 2010; 158: 3285- 3289.
85. Mostafaii GR, Aseman E, Asgharnia H, Akbari H, Iranshahi L, Sayyaf H. Efficiency of the Earthworm Eisenia Fetida under the effect of Organic Matter for Bioremediation of Soils Contaminated with Cadmium and Chromium. Brazil J Chem Engin. 2016; 33(04): 827-834.
86. Seribekkyzy G, Saimova RU, Saidakhmetova AK, Saidakhmetova GK, Esimov BK. Heavy metal effects on earthworms in different ecosystems. J Anim Behav Biometeorol. 2022; 10: 2228.
87. Poulsen TG, Bester K. Organic micropollutant degradation in sewage sludge during composting under thermophilic con¬ditions. Environ Sci Technol. 2010; 44: 5086-5091.
88. Suleiman H, Rorat A, Grobelak A, Grosser A, Milczarek M, Płytycz B, et al. Determination of the performance of vermicomposting process applied to sewage sludge by monitoring of the compost quality and immune responses in three earthworm species: Eisenia fetida, Eisenia andrei and Dendrobaena veneta. Bioresour Technol. 2017; 241: 103-112.
89. Wang Y, Han W, Wang X, Chen H, Zhu F, Wang X, et al. Speciation of heavy metals and bacteria in cow dung after vermicomposting by the earthworm, Eisenia fetida. Bioresour Technol. 2017; 245: 411-418.
90. Fu X, Huang K, Chen X, Li F, Cui G. Feasibility of vermistabilization for fresh pellet¬ized dewarted sludge with earthworms Bimastus parvus. Bioresour Technol. 2015; 175: 646-650.
91. Lv B, Xing M, Yang J. Speciation and trans¬formation of heavy metals during vermicomosting of animal manure. Bioresour Technol. 2016; 209: 397-401.
92. Kujawska J, Wójcik-Oliveira K. Effect of Vermicomposting on the Concentration of Heavy Metals in Soil with Drill Cuttings. J Ecol Engin. 2019; 20(1): 152-157.
93. Ismail SA. Keynote Papers and Extended Abstracts. Congress on traditional sciences and technologies of India, I.I.T., Mumbai. 1993; 10: 27-30.
94. Ismail SA. The Earthworm Book. Other India Press, Mapusa, Goa. 2005; 101p.
95. Fatima N, Singh K. Accumulation of Heavy Metals from the Combination of Different Biological Wastes by Earthworm Lampito mauritii Kinberg. Int J Zool Investig. 2023; 9(1): 257-271.
96. Xiao R, Ali A, Xu Y, Abdelrahman H, Li R, Lin Y, et al. Earthworms as candidates for remediation of potentially toxic elements contaminated soils and mitigating the environmental and human health risks: A review. Environ Int. 2022; 158: 106924.
97. Shi Z, Liu J, Tang Z, Zhao Y, Wang C. Vermiremediation of organically contaminated soils: Concepts, current status, and future perspectives. Appl Soil Ecol. 2020; 147: 103377.
98. Zhang C, Mora P, Dai J, Chen X, Giusti-Miller S, Ruiz-Camacho N, et al. Earthworm and organic amendment effects on microbial activities and metal availability in a contaminated soil from China. Appl Soil Ecol. 2016; 104: 54-66.
99. Kizilkaya R, Askin T, Bayrakl B, Sağlam M. Microbiological characteristics of soils contaminated with heavy metals. Eur J Soil Biol. 2004; 40: 95-102.
100. Marinussen MPJC, Van der Zee SEATM, De Haan FAM, Bouwman LM, Hefting M. Heavy metal (copper, lead, and zinc) accumulation and excretion by the earthworm, Dendrobaena veneta. J Environ Qual. 1997; 26: 278-284.
101. Peijnenburg WJGM, Baerselman R, De Groot AC. Relating environmental availability to bioavailability: soil-type dependent metal accumulation in the oligochaete Eisenai andrei. Ecotoxicol Environ Saf. 1999; 44: 294-310.
102. Spurgeon DJ, Hopkin SP. Comparisons of metal accumulation and excretion kinetics in earthworms (Eisenia fetida) exposed to contaminated field and laboratory soils. Appl Soil Ecol. 1999; 11: 227-243.
103. Morgan AJ, Sturzenbaum SR, Winters C, Kille P. Cellular and molecular aspects of metal sequestration and toxicity in earthworms. Invertebr Reprod Dev. 1999; 36: 17-24.
104. Rainbow PS. Trace metal concentrations in aquatic invertebrates: why and so what? Environ Pollut. 2002; 120: 497-507.
105. Wallace WG, Lopez GR. Bioavailability of biologically sequestered cadmium and the implications of metal detoxification. Mar Ecol Prog Ser. 1997; 147: 149-157.
106. Vijver MG, Van Gestel CAM, Lanno RP, Van Straalen NM, Peijnenburg WJGM. Internal metal sequestration and its ecotoxicological relevance: a review. Environ Sci Technol. 2004; 38: 4705-4712.
107. Tessier L, Vaillancourt G, Pazdernik L. Temperature effects on cadmium and mercury kinetics in freshwater mollusks under laboratory conditions. Arch Environ Contam Toxicol. 1994; 26: 179-184.
108. Morgan JE, Morgan AJ. The distribution of cadmium, copper, lead, zinc and calcium in the tissues of the earthworm Lumbricus rubellus sampled from one uncontaminated and four polluted soils. Oecologia. 1990; 84: 559-566.
109. Morgan AJ, Turner MP, Morgan JE. Morphological plasticity in metal sequestering earthworm chloragocytes: morphometric electron microscopy provides a biomarker of exposure in field populations. Environ Toxicol Chem. 2002; 21: 610-618.
110. Dabke SV. Vermi-remediation of heavy metal-contaminated soil. J Health Pollut. 2013; 3: 4-10.
111. Shahmansouri R, Pourmoghadas MR, Parvaresh AR, Alidadi H. Heavy Metals Bioaccumulation by Iranian and Australian Earthworms (Eisenia fetida) in the Sewage Sludge Vermicomposting. Iran J Environ Health Scient Engin. 2005; 2: 28-32.
112. Pattnaik S, Reddy MV. Heavy Metals remediation from urban wastes using three species of earthworm (Eudrilus eugeniae, Eisenia fetida and Perionyx excavatus). J Environ Chem Ecotoxicol. 2011; 3: 345-356.
113. Owagboriaye FO, Dedeke GA, Ademolu KO, Adebambo OA. Bioaccumulation of heavy metals in earthworms collected from abattoir soils in Abeokuta, south-western Nigeria. Zoologist Soc Nigeria. 2015; 13: 36-42.
114. Bhartiya DK, Singh K. Accumulation of Heavy Metals by Eisenia foetida from Different animal dung and Kitchen wastes during Vermicomposting. Int J Life Sci Technol. 2011; 4: 47-52.
115. Fatima N, Singh K. Cobalt, Chromium and Lead Heavy Metals Accumulation from animal dung, soil and rice grain through vermic-activity by Lampito mauritii Kinberg. Int J Zool Appl Biosci. 2023; 8: 5-18.
116. Biswas JK, Banerjee A, Sarkar B, Sarkar D, Sarkar SK, Rai M, et al. Exploration of an extracellular polymeric substance from earthworm gut bacterium (Bacillus licheniformis) for bioflocculation and heavy metal removal potential. Appl Sci. 2020; 10: 349.
117. Kokhia M, Lortkipanidze M, Gorgadze O, Kuchava M, Nebieridze D. Earthworms (Oligochaeta: Lumbricidae) and Heavy Metals: Content and Bioaccumulation in the Body. J Agricult Sci. 2022; 1: 95-100.


This work is licensed under a Creative Commons Attribution 4.0 International License.