Zika and SARS-CoV-2: neuroinflammation and neurodegenerative outcomes

  • Jenniffer Ramos Martins Laboratory of Cell Biology, Department of Biological Sciences, State University of Minas Gerais, Ibirité, MG, Brazil
  • Felipe Emanuel Oliveira Rocha Laboratory of Cell Biology, Department of Biological Sciences, State University of Minas Gerais, Ibirité, MG, Brazil
  • Vivian Vasconcelos Costa, Costa Center of Research and Drug Development, Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil https://orcid.org/0000-0002-0175-642X
  • Felipe Ferraz Dias, Dias Laboratory of Cell Biology, Department of Biological Sciences, State University of Minas Gerais, Ibirité, MG, Brazil https://orcid.org/0000-0002-3493-6929
Keywords: COVID-19, Infection, Inflammation, Neurodegeneration, SARS-CoV-2, Zika virus

Abstract

Through the emergence of new viral infectious diseases, epidemics and pandemics have brought great impacts on public health in recent decades. In this review, we sought to understand the association between the neurological outcomes of two relevant infectious diseases, Zika and COVID-19. Zika can trigger neurological and ophthalmic damage in children born from infected mothers, as well as, Guillain-Barré syndrome, encephalitis, and myelitis in adults. On the other hand, the SARS-CoV-2 virus has great potential to trigger an inflammatory process in the optic nerve, with optic neuritis as the most reported pathology. Although Zika and SARS-CoV-2 infections are associated with different clinical manifestations, both may trigger similar pathogenic processes, through the induction of pro-inflammatory chemokines and cytokines release, triggering neurological and ophthalmological damage in infected patients. Elements in common have been found in both infections, such as antibodies against myelin oligodendrocyte glycoprotein, and the production of CXCL10, a chemokine responsible for the activation of several cellular types (T cells, eosinophils, monocytes and NK cells) in which are responsible to the induction of a cytokine cascade in the body. Based on these last findings, we suggest that both infections have similar activation characteristics as well as common pathogenic mechanisms associated with central nervous system involvement.

DOI: http://dx.doi.org/10.5281/zenodo.7374340

Downloads

Download data is not yet available.

References

1. McArthur DB. Emerging infectious diseases. Nurs Clin North Am. 2019; 54(2): 297-311.
2. Weaver SC, Reisen WK. Present and future arboviral threats. Antiviral Res. 2010; 85(2): 328-345.
3. Altmann DM. Mapping innate and adaptive immune function in arbovirus infections. Immunology. 2018; 154(1): 1-2.
4. Pereira-Silva JW, Nascimento VAD, Belchior HCM, Almeida JF, Pessoa FAC, Naveca FG, et al. First evidence of Zika virus venereal transmission in Aedes aegypti mosquitoes. Mem Inst Oswaldo Cruz. 2018; 113(1): 56-61.
5. Dhama K, Khan S, Tiwari R, Sircar S, Bhat S, Malik YS, et al. Coronavirus disease 2019-COVID-19. Clin Microbiol Rev. 2020; 33(4): e00028-20.
6. Iwasaki A, Medzhitov R. Regulation of adaptive immunity by the innate immune system. Science. 2010; 327(5963): 291-295.
7. Teva A, Fernandez JCC, Silva VL. Virology. In: Molinaro EM, Caputo LFG, Amendoeira MRR, eds. Concepts and methods for training professionals in health laboratories: 4th volume [in Portuguese]. Rio de Janeiro: Escola Politécnica de Saúde Joaquim Venâncio, Instituto Oswaldo Cruz, 2009: 125-220.
8. Bhardwaj U, Pandey N, Rastogi M, Singh SK. Gist of Zika Virus pathogenesis. Virology. 2021; (560): 86-95.
9. Gulland A. Zika virus is a global public health emergency, declares WHO. BMJ. 2016; 352: i657.
10. Ahmad F, Siddiqui A, Kamal MA, Sohrab SS. Inhibition of neurogenesis by Zika Virus infection. CNS Neurol Disord Drug Targets. 2021; 17(2): 78-86.
11. Secretaria de Vigilância em Saúde. Epidemiological situation of congenital syndrome associated with Zika virus infection in 2020, up to epidemiological week 45 [in Portuguese]. Boletim Epidemiológico do Ministério da Saúde. 2020; 51(47): 1-18.
12. Olmo IG, Carvalho TG, Costa VV, Alves-Silva J, Ferrari CZ, Izidoro-Toledo TC, et al. Zika virus promotes neuronal cell death in a non-cell autonomous manner by triggering the release of neurotoxic factors. Front Immunol. 2017; 8(1016): 1-14.
13. Costa VV, Del Sarto JL, Rocha RF, Silva FR, Doria JG, Olmo IG, et al. N-Methyl-d-aspartate (NMDA) receptor blockade prevents neuronal death induced by Zika virus infection. mBio. 2017; 8(2): e00350-17.
14. Lessler J, Chaisson LH, Kucirka LM, Bi Q, Grantz K, Salje H, et al. Assessing the global threat from Zika virus. Science. 2016; 353(6300): aaf8160.
15. Zin AA, Tsui I, Rossetto J, Vasconcelos Z, Adachi K, Valderramos S, et al. Screening criteria for ophthalmic manifestations of congenital Zika virus infection. JAMA Pediatr. 2017; 171(9): 847-854.
16. Cui L, Zou P, Chen E, Yao H, Zheng H, Wang Q, et al. Visual and motor deficits in grown-up mice with congenital Zika virus infection. EBioMedicine. 2017; 20: 193-201.
17. Benzekri R, Belfort Jr. R, Ventura CV, Freitas BP, Maia M, Leite M, et al. Ocular manifestations of Zika virus: what we do and do not know [in French]. J Fr Ophtalmol. 2017; 40(2): 138-145.
18. Neri VC, Xavier MF, Barros PO, Bento CM, Marignier R, Papais Alvarenga R. Case report: acute transverse myelitis after Zika virus infection. Am J Trop Med Hyg. 2018; 99(6): 1419-1421.
19. Zhu S, Luo H, Liu H, Ha Y, Mays ER, Lawrence RE, et al. p38MAPK plays a critical role in induction of a pro-inflammatory phenotype of retinal Müller cells following Zika virus infection. Antiviral Res. 2017; 145: 70-81.
20. Gonzalez-Escobar G, Valadere AM, Adams R, Polson-Edwards K, Hinds A, Misir A, et al. Prolonged Zika virus viremia in a patient with Guillain-Barré syndrome in Trinidad and Tobago. Rev Panam Salud Publica. 2018; 41: e136.
21. Sousa JR, Azevedo RDSDS, Quaresma JAS, Vasconcelos PFDC. The innate immune response in Zika virus infection. Rev Med Virol. 2021; 31(2): e2166.
22. Xu Q, Tang Y, Huang G. Innate immune responses in RNA viral infection. Front Med. 2021; 15(3): 333-346.
23. Ngono AE, Shresta S. Immune response to dengue and Zika. Annu Rev Immunol. 2018; 36: 279-308.
24. Liang B, Guida JP, Nascimento MLC, Mysorekar IU. Host and viral mechanisms of congenital Zika syndrome. Virulence. 2019; 10(1): 768-775.
25. Ngueyen T, Kim SJ, Lee JY, Myoung J. Zika Virus proteins NS2A and NS4A are major antagonists that reduce IFN-β promoter activity induced by the MDA5/RIG-I signaling pathway. J Microbiol Biotechnol. 2019; 29(10): 1665-1674.
26. Maucourant C, Queiroz GAN, Samri A, Grassi MFR, Yssel H, Vieillard V. Zika virus in the eye of the cytokine storm. Eur Cytokine Netw. 2019; 30(3): 74-81.
27. Gold DM, Galetta SL. Neuro-ophthalmologic complications of coronavirus disease 2019 (COVID-19). Neurosci Lett. 2021; 742: 135531.
28. Bösmüller H, Matter M, Fend F, Tzankov A. The pulmonary pathology of COVID-19. Virchows Arch. 2021; 478(1): 137-150.
29. Burgos-Blasco B, Güemes-Villahoz N, Vidal-Villegas B, Martinez-de-la-Casa JM, Donate-Lopez J, Martín-Sánchez FJ, et al. Optic nerve and macular optical coherence tomography in recovered COVID-19 patients. Eur J Ophthalmol. 2022; 32(1): 628-636.
30. Pietrobon AJ, Teixeira F, Sato MN. Immunosenescence and inflammaging: risk factors of severe COVID-19 in older people. Front Immunol. 2020; 11(579220): 1-18.
31. Yong SJ. Long COVID or post-COVID-19 syndrome: putative pathophysiology, risk factors, and treatments. Infect Dis (Lond). 2021; 53(10): 737-754.
32. Holmes EC, Goldstein SA, Rasmussen AL, Robertson DL, Crits-Christoph A, Wertheim JO, et al. The origins of SARS-CoV-2: a critical review. Cell. 2021; 184(19): 4848-4856.
33. Uzunian A. Coronavirus SARS-CoV-2 and Covid-19. J Bras Patol Med Lab. 2020; 56: 1-4.
34. Oliveira SC, Magalhães M, Homan EJ. Immunoinformatic analysis of SARS-CoV-2 nucleocapsid protein and identification of COVID-19 vaccine targets. Front Immunol. 2020; 11(587615): 1-10.
35. Samudrala PK, Kumar P, Choudhary K, Thakur N, Wadekar GS, Dayaramani R, et al. Virology, pathogenesis, diagnosis and in-line treatment of COVID-19. Eur J Pharmacol. 2020; 883(173375): 1-12.
36. McAlpine LS, Fesharaki-Zadeh A, Spudich S. Coronavirus disease 2019 and neurodegenerative disease: what will the future bring? Curr Opin Psychiatry. 2021; 34(2): 177-185.
37. Žorić L, Rajović-Mrkić I, Čolak E, Mirić D, Kisić B. Optic neuritis in a patient with seropositive myelin oligodendrocyte glycoprotein antibody during the post-COVID-19 period. Int Med Case Rep J. 2021; 14: 349-355.
38. MacDougall M, El-Hajj Sleiman J, Beauchemin P, Rangachari M. SARS-CoV-2 and multiple sclerosis: potential for disease exacerbation. Front Immunol. 2022; 13(871276): 1-22.
39. Garjani A, Middleton RM, Hunter R, Tuite-Dalton KA, Coles A, Dobson, R, et al. COVID-19 is associated with new symptoms of multiple sclerosis that are prevented by disease modifying therapies. Mult Scler Relat Disord. 2021; 52(102939): 1-6.
40. Azab MA, Hasaneen SF, Hanifa H, Azzam AY. Optic neuritis post-COVID-19 infection. A case report with meta-analysis. Interdiscip Neurosurg. 2021; 26: 101320.
41. Azab MA, Azzam AY. SARS-CoV-2 associated viral encephalitis with mortality outcome. Interdiscip Neurosurg. 2021; 25: 101132.
42. Anghelescu A, Onose G, Popescu C, Băilă M, Stoica SI, Postoiu R, et al. Parkinson's disease and SARS-CoV-2 infection: particularities of molecular and cellular mechanisms regarding pathogenesis and treatment. Biomedicines. 2022; 10(1000): 1-30.
43. Chiricosta L, Gugliandolo A, Mazzon E. SARS-CoV-2 exacerbates beta-amyloid neurotoxicity, inflammation and oxidative stress in Alzheimer's disease patients. Int J Mol Sci. 2021; 22(13603): 1-13.
44. François J, Collery AS, Hayek G, Sot M, Zaidi M, Lhuillier L, et al. Coronavirus disease 2019-associated ocular neuropathy with panuveitis: a case peport. JAMA Ophthalmol. 2021; 139(2): 247-249.
45. Sawalha K, Adeodokun S, Kamoga GR. COVID-19-induced acute bilateral optic neuritis. J Investig Med High Impact Case Rep. 2020; 8: 2324709620976018.
46. Merabtene L, Clermont CV, Deschamps R. Optic neuropathy in positive anti-MOG antibody syndrome [in French]. J Fr Ophtalmol. 2019; 42(10): 1100-1110.
47. Rodríguez-Rodríguez MS, Romero-Castro RM, Alvarado-de-la-Barrera C, González-Cannata MG, García-Morales AK, Ávila-Ríos S. Optic neuritis following SARS-CoV-2 infection. J Neurovirol. 2021; 27(2): 359-363.
48. Solomon T. Neurological infection with SARS-CoV-2 - the story so far. Nat Rev Neurol. 2021; 17(2): 65-66.
49. Toor SM, Saleh R, Nair VS, Taha RZ, Elkord E. T-cell responses and therapies against SARS-CoV-2 infection. Immunology. 2021; 162(1): 30-43.
50. Jansen L, Tegomoh B, Lange K, Showalter K, Figliomeni J, Abdalhamid B, et al. Investigation of a SARS-CoV-2 B.1.1.529 (Omicron) variant cluster - Nebraska, November-December 2021. Morb Mortal Wkly Rep. 2021; 70(51-52): 1782-1784.
51. Harrison AG, Lin T, Wang P. Mechanisms of SARS-CoV-2 transmission and pathogenesis. Trends Immunol. 2020; 41(12): 1100-1115.
52. El Bini Dhouib I. Does coronaviruses induce neurodegenerative diseases? A systematic review on the neurotropism and neuroinvasion of SARS-CoV-2. Drug Discov Ther. 2021; 14(6): 262-272.
53. Burks SM, Rosas-Hernandez H, Ramirez-Lee MA, Cuevas E, Talpos JC. Can SARS-CoV-2 infect the central nervous system via the olfactory bulb or the blood-brain barrier?. Brain Behav Immun. 2021; 95: 7-14.
54. Iroegbu JD, Ifenatuoha CW, Ijomone OM. Potential neurological impact of coronaviruses: implications for the novel SARS-CoV-2. Neurol Sci. 2020; 41(6): 1329-1337.
55. Erickson MA, Rhea EM, Knopp RC, Banks WA. Interactions of SARS-CoV-2 with the blood-brain barrier. Int J Mol Sci. 2021; 22(5): 2681.
56. Arandia-Guzmán J, Antezana-Llaveta G. SARS-CoV-2: structure, replication and physiopathological mechanisms related to COVID-19 [in Spanish]. Gac Med Bol. 2020; 43(2): 170-178.
57. Frieman M, Baric R. Mechanisms of severe acute respiratory syndrome pathogenesis and innate immunomodulation. Microbiol Mol Biol Rev. 2008; 72(4): 672-685.
58. Li H, Liu L, Zhang D, Xu J, Dai H, Tang N, et al. SARS-CoV-2 and viral sepsis: observations and hypotheses. Lancet. 2020; 395(10235): 1517-1520.
59. Zhang N, Zhao YD, Wang XM. CXCL10 an important chemokine associated with cytokine storm in COVID-19 infected patients. Eur Rev Med Pharmacol Sci. 2020; 24(13): 7497-7505.
60. Netland J, Meyerholz DK, Moore S, Cassell M, Perlman S. Severe acute respiratory syndrome coronavirus infection causes neuronal death in the absence of encephalitis in mice transgenic for human ACE2. J Virol. 2008; 82(15): 7264-7275.
61. Liu JM, Tan BH, Wu S, Gui Y, Suo JL, Li YC. Evidence of central nervous system infection and neuroinvasive routes, as well as neurological involvement, in the lethality of SARS-CoV-2 infection. J Med Virol. 2021; 93(3): 1304-1313.
62. Musso D, Ko AI, Baud D. Zika virus infection - after the pandemic. N Engl J Med. 2019; 381(15): 1444-1457.
63. Hu B, Guo H, Zhou P, Shi ZL. Characteristics of SARS-CoV-2 and COVID-19. Nat Rev Microbiol. 2021; 19(3): 141-154.
64. Song BH, Yun SI, Woolley M, Lee YM. Zika virus: history, epidemiology, transmission, and clinical presentation. J Neuroimmunol. 2017; 308: 50-64.
65. Parasher A. COVID-19: current understanding of its pathophysiology, clinical presentation and treatment. Postgrad Med J. 2021; 97(1147): 312-320.
66. Filgueiras IS, Torrentes de Carvalho A, Cunha DP, Mathias da Fonseca DL, El Khawanky N, Freire PP, et al. The clinical spectrum and immunopathological mechanisms underlying ZIKV-induced neurological manifestations. PLoS Negl Trop Dis. 2021; 15(8): e0009575.
67. Maury A, Lyoubi A, Peiffer-Smadja N, de Broucker T, Meppiel E. Neurological manifestations associated with SARS-CoV-2 and other coronaviruses: a narrative review for clinicians. Rev Neurol. 2021; 177(1-2): 51-64.
68. MS. Panel of cases of coronavirus disease 2019 (COVID-19) in Brazil by the Ministry of Health [in Portuguese]. Ministério da Saúde (MS). 2021. Available from: https://covid.saude.gov.br/ [Accessed on 12rd September 2022].
69. Secretaria de Vigilância em Saúde. Deaths from arboviroses in Brazil, 2008 to 2019 [in Portuguese]. Boletim Epidemiológico do Ministério da Saúde. 2020; 51(33): 1-28.
Published
2022-11-28
How to Cite
(1)
Martins, J.; Rocha, F.; Costa, V.; Dias, F. Zika and SARS-CoV-2: Neuroinflammation and Neurodegenerative Outcomes. European Journal of Biological Research 2022, 12, 307-319.
Section
Review Articles