Tissue culture approaches to improve nutritional quality and stress response in peanut

  • Amit Das Research Assistant, Department of Genetics and Plant Breeding, Bangladesh Agricultural University, Mymensingh-2202, Bangladesh; Gafargaon Islamia Government High School, Gafargaon, Mymensingh, Bangladesh
  • Juran C. Goyali Centre for Aquaculture and Seafood Development, Fisheries and Marine Institute of Memorial University of Newfoundland, St. John's, NL, Canada
  • Aleya Ferdausi Associate Professor, Department of Genetics and Plant Breeding, Bangladesh Agricultural University
Keywords: Peanut, In vitro, Genetic transformation, Biotic and abiotic stresses, Nutritional quality

Abstract

Peanut, also known as groundnut (Arachis hypogaea L.), is an annual leguminous oil crop cultivated worldwide for food and fodder. Several stress factors critically diminish the productivity and nutritional quality of this protein-rich plant. In vitro cell and tissue culture systems have been used in many plant species to rapidly propagate large numbers of plants, create somaclonal variation, produce bioactive compounds, and enable genetic engineering. Tissue culture based mutagenesis and genetic engineering are particularly attractive for crop improvement. Tissue culture techniques have been implicated over the years to improve peanut, despite the general recalcitrant nature of this species to in vitro culture. In this manuscript, we review the progress that has been made on in vitro culture of peanut, and its application to improve nutritional quality and resistance to major biotic and abiotic stresses in peanut.

DOI: http://dx.doi.org/10.5281/zenodo.5091854

Downloads

Download data is not yet available.

References

1. Bakoye O, Baoua I, Sitou L, Moctar MR, Amadou L, Njoroge AW, et al. Peanut production and storage in the sahel: challenges and opportunities in the Maradi and Zinder Regions of Niger. J Agric Sci. 2019; 11(4): 25-34.
2. Pal A, Pal AK. Physiological basis of salt tolerance in peanut (Arachis hypogaea L.). Int J Curr Microb Appl Sci. 2017; 6: 2157-2171.
3. FAO (2018) Food Outlook. Retrieved from http://www.fao.org/3/CA0239EN/ca0239en.pdf.
4. Atlas Big (2019) Retrieved from https://www.atlasbig.com/en-in/countries-by-peanut-production.
5. FAO (2019) Retrieved from https://www.nationmaster.com/nmx/ranking/peanuts-production
6. Janila P, Pandey MK, Shasidhar Y, Variath MT, Sriswathi M, Khera P, et al. Molecular breeding for introgression of fatty acid desaturase mutant alleles (ahFAD2A and ahFAD2B) enhances oil quality in high and low oil containing peanut genotypes. Plant Sci. 2016; 242: 203-213.
7. Shokunbi OS, Fayomi ET, Sonuga OS, Tayo GO. Nutrient composition of five varieties of commonly consumed Nigerian peanut (Arachis hypogaea L.). Grasas Aceites. 2012; 63: 14-18.
8. Janila P, Nigam SN, Abhishek R, Anil Kumar V, Manohar SS, Venuprasad R. Iron and zinc concentrations in peanut (Arachis hypogaea L.) seeds and their relationship with other nutritional and yield parameters.
J Agric Sci. 2014; 153(6): 975-994.
9. Arya SS, Salve AR, Chauhan S. Peanuts as functional food: a review. J Food Sci Technol. 2016; 53: 31-41.
10. Kumar V, Thirumalaisamy PP. Diseases of peanut. Disease of field crops and their management. Indian Phytopathological Society, Today and Tomorrow’s Printers and Publishers, New Delhi. 2016; 445-494.
11. Coulibaly MA, Ntare P, Gracen Danquah BR, Gracen VE, Kwadwo O. Peanut production constraints and farmers’ preferred varieties in Niger. Int J Innov Sci Eng Technol. 2017; 4: 2348-7968.
12. Kambiranda DM, Vasanthaiah HK, Katam R, Ananga A, Basha SM, Naik K. Impact of drought stress on peanut (Arachis hypogaea L.) productivity and food safety. Plants Env. 2011; 21: 249-272.
13. Azad MA, Hamid MA, Yasmine F. Enhancing abiotic stress tolerance in peanut through induced mutation. In: Tomlekova NB, Kozgar MI, Wani MR (eds.), Mutagenesis: exploring genetic diversity of crops. 2014; 331-346.
14. Khalifa MM, El-Sayeda HM, El-Badawy MF. Abol-Ela, Gomaa AM. Influence of some biofertilizers and different sources of mineral phosphorus on controlling pod rot diseases and aflatoxin contamination in seeds of peanut. Ann Agric Sci. 2010; 48: 37-48.
15. Azzam C, Khalifa M. Peanut mutants resistant to aflatoxin induced through gamma ray and somaclonal variation and its associated genetic molecular markers. Proceedings of The IRES 26th International Conference, Paris, France. 2016.
16. Waliyar F, Kumar PL, Ntare BR, Monyo E, Nigam SN, Reddy AS, Osiru M, Diallo AT. A century of research on peanut rosette disease and its management. Information Bulletin no. 75. 2007.
17. Dhuha SM, Taghian AS, El-Aref HM, Abd-El-Fatah BES. Gene Expression and in vitro Selection for Salinity Tolerance in Peanut. Assiut J Agric Sci. 2014; 45; 67-80.
18. Ahmad N, Khan MR, Shah SH, Zia MA, Hussain I, Muhammad A, Ali GM. An efficient and reproducible tissue culture procedure for callus induction and multiple shoots regeneration in peanut (Arachis hypogaea L.). J Anim Plant Sci. 2020; 30: 1540-1547.
19. Ferdausi A, Chang X, Hall A, Jones M. Galanthamine production in tissue culture and metabolomic study on Amaryllidaceae alkaloids in Narcissus pseudonarcissus cv. Carlton. Ind Crops Prod. 2020; 144: 112058.
20. Vinocur B, Altman A. Recent advances in engineering plant tolerance to abiotic stress: achievements and limitations. Curr Opin Biotechnol. 2005; 16: 123-132.
21. Bhatia S, Dahiya R. Concepts and techniques of plant tissue culture science. Modern Appl Plant Biotech Pharm Sci. 2015; 121-156.
22. Espinosa-Leal CA, Puente-Garza CA, García-Lara S. In vitro plant tissue culture: means for production of biological active compounds. Planta. 2018; 248: 1-8.
23. Kaeppler SM, Kaeppler HF, Rhee Y. Epigenetic aspects of somaclonal variation in plants. In: Plant Gene Silencing. Springer, Dordrecht. 2000: 59-68.
24. Trivedi R. Effect of Different Factors During In Vitro Growth and Multiplication in Peanut Cultivar ‘JL-24’. Proceedings of the National Academy of Sciences, India Section B: Biol Sci. 2016; 86: 131-137.
25. Purushotham MG, Vajranabhaiah SN, Patil VS, Chandrashekhara Reddy P, Prasad GG, Prakash, AH. Development of drought tolerant cell lines in peanut (Arachis hypogeae L.) genotypes in vitro. Indian J Plant Physiol. 1998; 3: 283-286.
26. Robinson JP, Srivardhini S, Sasikumar G. Somatic embryogenesis and plant regeneration from cotyledon tissue of Arachis hypogaea L. Res Plant Biol. 2011; 1.
27. Keshavareddy G, Rohini S, Ramu SV, Sundaresha S, Kumar AR, Kumar PA, Udayakumar M. Transgenics in peanut (Arachis hypogaea L.) expressing cry1AcF gene for resistance to Spodoptera litura (F.). Physiol Mol Biol Plants. 2013; 19: 343-352.
28. Gantait S, Mondal S. Transgenic approaches for genetic improvement in peanut (Arachis hypogaea L.) against major biotic and abiotic stress factors. J Genetic Eng Biotech. 2018; 16: 537-544.
29. Feldman EB. Assorted monounsaturated fatty acids promote healthy hearts. Am J Clin Nutr. 1999; 70: 953-954.
30. USDA (United States Department of Agriculture) (2014): http://www. nal.usda.gov/fnic/foodcomp/search/. Accessed 21 Aug 2014.
31. Morris MC. Dietary niacin and the risk of incident Alzheimer’s disease and of cognitive decline. J Neurol Neurosurg Psychiatry. 2004; 75: 1093-1099.
32. Griel AE, Eissenstat B, Juturu V, Hsieh G, Kris-Etherton PM. Improved diet quality with peanut consumption. J Am Coll Nutr. 2004; 23: 660-668.
33. King DE. Dietary magnesium and C-reactive protein levels. J Am Coll Nutr. 2005; 24: 166-171.
34. Song Y, Ridker PM, Manson JE, Cook NR, Buring JE, Liu S. Magnesium intake, C-reactive protein, and the prevalence of metabolic syndrome in middle-aged and older U.S. women. Diabetes Care. 2005; 28: 1438-1444.
35. Coates A, Howe P. Edible nuts and metabolic health. Curr Opin Lipidol. 2019; 18: 25-30.
36. Yu JM, Ahmedna M, Goktepe I, Dai J. Peanut skin procyanidins: composition and antioxidant activities as affected by processing. J Food Compos Anal. 2006; 19: 364-371.
37. Sabate J, Ang Y. Nuts and health outcomes: new epidemiologic evidence. Am J Clin Nutr. 2009; 89: S1643-S1648.
38. Geulein I. Antioxidant properties of resveratrol: a structure activity insight. Innov Food Sci Emerg Technol. 2010; 11: 210-218.
39. Gonzalez CA, Salvado JS. The potential of nuts in the prevention of cancer. Br J Nutr. 2006; 96: S87-S94.
40. Woyengo TA, Ramprasath VR, Jones PJ. Anticancer effects of phytosterols. Eur J Clin Nutr. 2009; 63: 813-820.
41. Fazel Nabavi S, Li H, Daglia M, Nabavi MS. Resveratrol and stroke: from chemistry to medicine. Curr Neurovasc Res. 2014; 11: 390-397.
42. Awad AB, Chan KC, Downie AC, Fink CS. Peanuts as a source of β-sitosterol, a sterol with anticancer properties. Nutr Cancer. 2000; 36: 238-241.
43. Jiang R, Wang M, Davis S. Nut and peanut butter consumption and risk of type 2 diabetes in women. J Am Med Assoc. 2002; 288: 2554-2560.
44. Craft BD, Hargrove JL, Greenspan P, Hartle DK, Amarowicz R, Pegg RB. Recent advances in food and flavor chemistry. Food flavor and encapsulation, health benefits, analytical methods, and molecular biology of functional foods. R Soc Chem. 2010; 283-296.
45. Zhang Y, Zhang H, Wang L, Guo X, Qi X, Qian H. Influence of the degree of hydrolysis (DH) on antioxidant properties and radicalscavenging activities of peanut peptides prepared from fermented peanut meal. Eur Food Res Technol. 2011; 232: 941-950.
46. Debsharma S, Roy K, Ghosh S, Razzak M, Nath U, Azad A. In vitro callus development and plant regeneration from immature cotyledons-the best technology for sustainable peanut (Arachis hypogaea L.) production in the modern era. Int J Exp Agric. 2020; 10: 26-37.
47. Khin SM, Tin Y, Khine OA, Hla SY, Khin MN, Htun S, Khin S, Tin S. Somaclonal variation of peanut (Arachis hypogaea L.) induced by cell culture. J Agric For Lives Fish Sci. 2003; 40-53.
48. Neelakandan AK, Wang K. Recent progress in the understanding of tissue culture-induced genome level changes in plants and potential applications. Plant Cell Rep. 2012; 31: 597-620.
49. Jain M, Mathur G, Koul S, Sarin N. Ameliorative effects of proline on salt stress-induced lipid peroxidation in cell lines of peanut (Arachis hypogaea L.). Plant Cell Rep. 2001; 20: 463-468.
50. Hemon AF, Sudarsono. Evaluation of somaclones peanut plants regenerated from repeat cycles of in vitro selection against drought stress. Indonesian J Agron. 2010; 38(1): doi.org/10.24831/jai.v38i1.1677.
51. Gernand D, Golczyk H, Rutten T, Ilnicki T, Houben A, Joachimiak AJ. Tissue culture triggers chromosome alterations, amplification, and transposition of repeat sequences in Allium fistulosum. Genome. 2007; 50: 435-442.
52. Jin S, Mushke R, Zhu H, Tu L, Lin Z, Zhang Y, Zhang X. Detection of somaclonal variation of cotton (Gossypium hirsutum) using cytogenetics, flow cytometry and molecular markers. Plant Cell Rep. 2008; 27: 1303-1316.
53. Wu XM, Liu MY, Ge XX, Xu Q, Guo WW. Stage and tissue-specific modulation of ten conserved miRNAs and their targets during somatic embryogenesis of Valencia sweet orange. Planta. 2011; 233: 495-505.
54. Jiang C, Mithani A, Gan X, Belfield EJ, Klingler JP, Zhu J-K, et al. Regenerant Arabidopsis lineages display a distinct genome-wide spectrum of mutations conferring variant phenotypes. Curr Biol. 2011; 21: 1385-1390.
55. Yu X, Li X, Zhao X, Jiang L, Miao G, Pang J, et al. Tissue culture-induced genomic alteration in maize (Zea mays) inbred lines and F1 hybrids. Ann Appl Biol. 2011; 158: 237-247.
56. Linacero RE, Alves F, Vazquez AM. Hot spots of DNA instability revealed through the study of somaclonal variation. Theor Appl Genet. 2000; 100: 506-511.
57. Miguel C, Marum L. An epigenetic view of plant cells cultured in vitro: somaclonal variation and beyond. J Exp Bot. 2011; 62(11): 3713-3725.
58. Madlung A, Comai L. The effect of stress on genome regulation and structure. Ann Bot. 2004; 94: 481-495.
59. Palanivel S, Parvathi S, Jayabalan N. In vitro culture of mature embryo axes of peanut (Arachis hypogaea L.) J Indian Bot Soc. 2001; 80: 15-19.
60. Palanivel S, Jayabalan N. Direct multiple shoot induction from different mature seed explants of peanut (Arachis hypogaa L.) Philippines J Sci. 2002; 131: 127-131.
61. Iqbal MM, Nazir F, Iqbal J, Tehrim S, Zafar Y. In vitro micropropagation of peanut (Arachis hypogaea) through direct somatic embryogenesis and callus culture. Int J Agric Biol. 2011; 13: 811-814.
62. Ozias-Akins P, Gill R. Progress in the development of tissue culture and transformation methods applicable to the production of transgenic peanut. Peanut Sci. 2001; 28: 123-131.
63. Geng L, Niu L, Shu C, Song F, Huang D, Zhang J. High-efficiency regeneration of peanut (Arachis hypogaea L.) plants from leaf discs. Afr J Biotech. 2011; 10: 12650-12652.
64. Nazir F, ulHasan M, Akram Z, Javed MM, Ali S, Ali GM, Zafar Y. In vitro regeneration of Pakisthani peanut (Arachis hypogaea L.) varieties using de-embryonated coteledonary explants. Afr J Biotech. 2011; 10: 8599-8604.
65. Arockiasamy S, Prakash S, Ignacimuthu S. Direct organogenesis from mature leaf and petiole explants of Eryngium foetidum L. Biol Plant. 2002; 45: 129-132.
66. Venkatachalam P, Kavipriya V. Efficient method for in vitro plant regeneration from cotyledonary node explants of peanut (Arachis hypogaea L.). International Conference on Nuclear Energy, Environmental and Biological Sciences (ICNEEBS'2012). 2012: 8-9.
67. Ozudogru EA, Kaya E, Lambardi M. In vitro propagation of peanut (Arachis hypogaea L.) by shoot tip culture. In Protocols for Micropropagation of Selected Economically-Important Horticultural Plants. Humana Press, Totowa, NJ. 2012: 77-87.
68. Krishna G, Singh BK, Kim EK, Morya VK, Ramteke PW. Progress in genetic engineering of peanut (Arachis hypogaea L.). A review. Plant Biotech J. 2015; 2: 147-162.
69. Adu-Dapaah HK, Sangwan RS. Improving bambara peanut productivity using gamma irradiation and in vitro techniques. Afr J Biotech. 2004; 3: 260-265.
70. Koné M, Koné T, Silué N, Soumahoro AB, Kouakou TH. In vitro Seeds Germination and Seedling Growth of Bambara Peanut (Vigna subterranea (L.) Verdc. (Fabaceae). Sci World J. 2015: 595073.
71. Katembe WJ, Ungar IA, Mitchell JP. Effect of salinity on germination and seedling growth of twoAtriplexspecies (Chenopodiaceae). Ann Bot. 1998; 82: 167-175.
72. Baskin CC, Baskin JM. Germination ecophysiology of herbaceous plant species in a temperate region.
Am J Bot. 1988; 75: 286-305.
73. Ishag S, Osman MG, Khalafalla MM. Effects of growth regulators, explant and genotype on shoot regeneration in tomato (Lycopersicon esculentum cv Omdurman). Int J Sustain Crop Prod. 2009; 4: 7-13.
74. Tiwari S, Rakesh T. Multiple shoot regeneration in seed-derived immature leaflet explants of peanut (Arachis hypogaea L.). Sci Hortic. 2009; 121: 223-227.
75. Shan L, Tang G, Xu P, Liu Z, Bi Y. High efficiency in vitro plant regeneration from epicotyl explants of Chinese peanut cultivars. In Vitro Cell Dev Biol-Plant. 2009; 45: 525.
76. Alam AK, Khaleque MA. In vitro response of different explants on callus development and plant regeneration in peanut (Arachis hypogeae L.). Int J Exp Agric. 2010; 1: 1-4.
77. Venkatachalam P, Geetha N, Khandelwal A, Shaila MS, Sita GL. Agrobacterium-mediated genetic transformation and regeneration of transgenic plants from cotyledon explants of peanut (Arachis hypogaea L.) via somatic embryogenesis. Curr Sci. 2000; 78: 1130-1136.
78. Hussain KM, Anis M, Shahzad A. In vitro propagation of a multipurpose leguminous tree (Pterocarpus marsupium Roxb.) using nodal explants. Acta Physiol Plant. 2008; 30: 353-359.
79. Perveen S, Varsney A, Anis M, Aref IM. Influence of cytokinins, basal media and pH on adventitious shoot regeneration from excised root cultures of Albizia lebbeck. J Forestry Res. 2011; 22: 47-52.
80. Ismail N, Rani U, Batra A. High frequency in vitro regeneration of Clitoria ternatea L. affected by different cultural conditions. Ind J Biotech. 2012; 11: 210-214.
81. Yaseen M, Ahmad T, Sablok G, Standardi A, Hafiz IA. Review: role of carbon sources for in vitro plant growth and development. Mol Biol Rep. 2013; 40: 2837-2849.
82. George EF, Hall MA, De Klerk GJ. Plant growth regulators I: introduction; auxins, their analogues and inhibitors; Plant growth regulators II: cytokinins, their analogues and antagonists. Plant propagation by tissue culture. Springer, 2008.
83. Nagori R, Purohit SD. In vitro plantlet regeneration in Annona squamosa through direct shoots bud differentiation on hypocotyls segments. Sci Hortic. 2004; 99: 89-98.
84. Aasim M, Khawar KM, Ozcan S. In vitro micropropagation from plumular apices of Turkish cowpea (Vigna unguiculata L.) cultivar Akkiz. Scientia Hortic. 2009; 122: 468-471.
85. Guo B, Abbasi BH, Amir Zeb, Xu LL, Wei YH. Thidiazuron: A multi-dimensional plant growth regulator. Afr J Biotechnol. 2011; 10: 8984-9000.
86. Kakani A, Li G, Peng Z. Role of AUX1 in the control of organ identity during in vitro organogenesis and in mediating tissue specific auxin and cytokinin interaction in Arabidopsis. Planta. 2009; 229(3): 645-657.
87. Bhanumathi P, Ganesan M, Jayabalan N. A simple and improved protocol for direct and indirect somatic embryogenesis of peanut (Arachis hypogaea L.). J Agric Technol. 2005; 1: 327-344.
88. Cucco MF, Rossi Jaume AD. Protocol for regeneration in vitro of Arachis hypogaea L. Electron J Biotechnol. 2000; 3: 35-50.
89. Akasaka YH, Daimon, Mii M. Improved plant regeneration from cultured leaf segments in peanut (Arachis hypogaea L.) by limited exposure to thidia-zuron. Plant Sci. 2000; 156: 169-175.
90. Verma A. Response of peanut varieties to plant growth regulator (BAP) to induce direct organogenesis. World J Agric Sci. 2009; 5: 313-317.
91. Masanga J, Ommeh S, Kasili R, Alakonya A. An optimized protocol for high frequency regeneration of selected peanut (Arachis hypogaea L.) varieties from East Africa using cotyledons. Intl J Agri Crop Sci. 2013; 6(20): 1421-1425.
92. Dodo HW, Konan KN, Chen FC, Egnin M, Viquez OM. Alleviating peanut allergy using genetic engineering: the silencing of the immunodominant allergen Ara h 2 leads to its significant reduction and a decrease in peanut allergenicity. Plant Biotech J. 2008; 6: 135-145.
93. Wen S, Liu H, Li X, Chen X, Hong Y, Li H, Lu Q, Liang X. TALEN-mediated targeted mutagenesis of fatty acid desaturase 2 (FAD2) in peanut (Arachis hypogaea L.) promotes the accumulation of oleic acid. Plant Mol Biol. 2018; 97: 177-185.
94. Tang G, Xu P, Ma W, Wang F, Liu Z, Wan S, Shan L. Seed-specific expression of atlec1 increased oil content and altered fatty acid composition in seeds of peanut (Arachis hypogaea l.). Front Plant Sci. 2018; 9: 260.
95. Wang JS, Lei SH, Yue LI, Zhao MX, Xia WA, Qiao LX, et al. Development of peanut varieties with high oil content by in vitro mutagenesis and screening. J Int Agric. 2020; 19(12): 2974-2982.
96. Wang JS, Qiao LX, Zhao LS, Wang P, Guo BT, Liu LX, Sui JM. Performance of peanut mutants and their offspring generated from mixed high-energy particle field radiation and tissue culture. Genet Mol Res. 2015; 14(3): 10837-10848.
97. Bertioli DJ, Jenkins J, Clevenger J, Dudchenko O, Gao D, Seijo G, et al. The genome sequence of segmental allotetraploid peanut Arachis hypogaea. Nat Genetics. 2019; 51: 877-884.
98. Ojiewo CO, Janila P, Bhatnagar-Mathur P, Pandey MK, Desmae H, Okori P, et al. Advances in crop improvement and delivery research for nutritional quality and health benefits of peanut (Arachis hypogaea L.). Front Plant Sci. 2020; 11: 29.
99. Lacorte C, Aragao FJ, Almeida ER, Rech EL, Mansur E. Transient expression of GUS and the 2S albumin gene from Brazil nut in peanut (Arachis hypogaea L.) seed explants using particle bombardment. Plant Cell Rep. 1997; 16(9): 619-623.
100. Sunkara S, Bhatnagar-Mathur P, Sharma KK. Transgenic interventions in peanut crop improvement: progress and prospects. Gen Genom Breed Peanuts. 2014; 179-216.
101. Qiao LX, Ding X, Wang HC, Sui JM, Wang JS. Characterization of the beta-1,3-glucanase gene in peanut (Arachis hypogaea L.) by cloning and genetic transformation. Genet Mol Res. 2014; 13: 1893-1904.
102. Iqbal MM, Nazir F, Ali S, Asif MA, Zafar Y, Iqbal J, Ali GM. Over expression of rice chitinase gene in transgenic peanut (Arachis hypogaea L.) improves resistance against leaf spot. Mol Biotechnol. 2012; 50: 129-136.
103. Prasad K, Bhatnagar-Mathur P, Waliyar F, Sharma KK. Overexpression of a chitinase gene in transgenic peanut confers enhanced resistance to major soil borne and foliar fungal pathogens. J Plant Biochem Biotechnol. 2013; 22: 222-233.
104. Mallikarjuna G, Rao TS, Kirti PB. Genetic engineering for peanut improvement: current status and prospects. PCTOC. 2016; 125(3): 399-416.
105. Venkatachalam P, Jayabalan N. Selection and regeneration of peanut plants resistant to the pathotoxic culture filtrate of Cercosporidium personaturn through tissue culture technology. Appl Biochem Biotech. 1996; 61: 351-364.
106. Rao SC, Bhatnagar-Mathur P, Kumar PL, Reddy AS, Sharma KK. Pathogen-derived resistance using a viral nucleocapsid gene confers only partial non-durable protection in peanut against peanut bud necrosis virus. Arch Virol. 2013; 158: 133-143.
107. Geng L, Niu L, Gresshoff PM, Shu C, Song F, Huang D, Zhang J. Efficient production of Agrobacterium rhizogenes-transformed roots and composite plants in peanut (Arachis hypogaea L.). PCTOC. 2012; 109: 491-500.
108. Banavath JN, Chakradhar T, Pandit V, Konduru S, Guduru KK, Akila CS, et al. Stress inducible overexpression of AtHDG11 leads to improved drought and salt stress tolerance in peanut (Arachis hypogaea L.). Front Chem. 2018; 6: 34.
109. Sarkar T, Thankappan R, Kumar A, Mishra GP, Dobaria JR. Stress inducible expression of AtDREB1A transcription factor in transgenic peanut (Arachis hypogaea L.) conferred tolerance to soil-moisture deficit stress. Front. Plant Sci. 2016; 7: 935.
110. Qin H, Gu Q, Zhang J, Sun L, Kuppu S, Zhang Y, et al. Regulated expression of an isopentenyltransferase gene (IPT) in peanut significantly improves drought tolerance and increases yield under field conditions. Plant Cell Physiol. 2011; 52: 1904-1914.
111. Saravanakumar D, Samiyappan R. ACC deaminase from Pseudomonas fluorescens mediated saline resistance in peanut (Arachis hypogea) plants. J Appl Microbiol. 2007; 102: 1283-1292.
112. Banjara M, Zhu L, Shen G, Payton P, Zhang H. Expression of an Arabidopsis sodium/proton antiporter gene (AtNHX1) in peanut to improve salt tolerance. Plant Biotech Rep. 2012; 6: 59-67.
113. Manjulatha M, Sreevathsa R, Kumar AM, Sudhakar C, Prasad TG, Tuteja N, Udayakumar M. Overexpression of a pea DNA helicase (PDH45) in peanut (Arachis hypogaea L.) confers improvement of cellular level tolerance and productivity under drought stress. Mol Biotech. 2014; 56(2): 111-125.
114. Elia FM, Hosfield GL, Kelly JD, Uebersax MA. Genetic analysis and interrelationships between traits for cooking time, water absorption, and protein and tannin content of Andean dry beans. J Am Soc Hort Sci. 1997; 122(4): 512-518.
115. Jambunathan R. Peanut quality characteristics. Uses of Tropical Grain Legumes: proceedings of a Consultative Meeting. 1991: 267-275.
116. Bhuiyan MSA, Haque MM, Hoque MI, Sarker RH, Islam AS. Morphogenic responses of peanut leaflet explaints cultured in vitro. Plant Tissue Cult. 1992; 2(1): 49-53.
117. Radhakrishnan T, Murthy TGK, Chandran K, Bandyopadhyay A. Micro-progagation in peanut (Arachis hypogaea L.). Biologia-Plantrum. 2000; 43(3): 447-450.
118. Eapen S, George L. Somatic embryogenesis in peanut: influence of growth regulators and sugars. PCTOC. 1993; 35(2): 151-156.
119. Srinivasan T, Kumar K, Kirti P. Establishment of efficient and rapid regeneration system for some diploid wild species of Arachis. PCTOC. 2010; 101: 303-309.
120. Zhao MX, Qiao LX, Sui JM, Tan LL. An efficient regeneration system for peanut: somatic embryogenesis from embryonic leaflets. J Food Agric Envir. 2012; 10: 527-531.
Published
2021-07-12
How to Cite
(1)
Das, A.; Goyali, J.; Ferdausi, A. Tissue Culture Approaches to Improve Nutritional Quality and Stress Response in Peanut. European Journal of Biological Research 2021, 11, 332-347.
Section
Review Articles