Polyploidy promotes Harderian glands function under photo-oxidative stress in desert rodents

  • Ouanassa Saadi-Brenkia Department of Biology, University of Boumerdes Faculty of Sciences, Avenue de l'indépendance, 35000 Boumerdes, Algeria; Laboratory of Biology and Physiology of Organisms, Neurobiology, Scientific and Technical University Houari Boumediene, 16111 Algiers, Algeria
  • Saida Lounis Department of Biology, University of Boumerdes Faculty of Sciences, Avenue de l'indépendance, 35000 Boumerdes, Algeria; Laboratory of Biology and Physiology of Organisms, Neurobiology, Scientific and Technical University Houari Boumediene, 16111 Algiers, Algeria
  • Nadia Hanniche Laboratory of Biology and Physiology of Organisms, Neurobiology, Scientific and Technical University Houari Boumediene, 16111 Algiers, Algeria
Keywords: Harderian glands, Polyploidy, Cellular stress, Micronuclei, Electron microscopy, Desert rodents


The presence of higher-ploidy cells within Harderian glands (HG) of desert rodents could be explained as an adaptive response to mitigate the effects of photo-oxidative stress. The principally products of HG are porphyrins, pigmentary accretions which interact with the intense luminosity of the Sahara and, then produce reactive oxygen species. Thus, the gland permanently suffers a physiological oxidative stress, with a great number of sings of degeneration, but without compromising the gland integrity. In this work, we used light and transmission electron microscopy to examine the morphological features of cell ploidy in HG of three species of Gerbillidae. Psamomys obesus, Meriones lybicus and Gerbillus tarabuli. The results showed that, the glands of these species are large in size and lobulated. The glandular parenchyma consists of tubulo-alveoli surrounding a lumen into which the secretions are discharged. Frequently cells are binucleated and multinucleated. Transmission electron microscopy reveals the presence of secretory cells with conspicuous nuclei and sometimes with micronuclei. Binuclear cells are created by acytokinetic mitosis. No cell membranes within the cytoplasm are observed. Our results provide morphological evidences, that HG of desert rodents employ polyploidy as cellular adaptive response to extreme arid environment.

DOI: http://dx.doi.org/10.5281/zenodo.5092126


Download data is not yet available.


1. Arrigo N, Barker MS. Rarely successful polyploids and their legacy in plant genomes. Curr Opin Plant Biol. 2012; 15: 140-146.
2. Lexer C, Fay MF. Adaptation to environmental stress: a rare or frequent driver of speciation? J Evol Biol. 2005; 18: 893-900.
3. Edgar BA, Or-Weaver TL. Endoreplication cell cycles: more for less. Cell. 2001; 105(3): 297-306.
4. Flemming AJ, Shen ZZ, Cunha A, Emmons SW, Leroi AM. Somatic polyploidization and cellular proliferation drive body size evolution in nematodes. Proc Natl Acad Sci USA. 2000; 97: 5285-5290.
5. Lee HO, Davidson JM, Duronio RJ. Endoreplication: polyploidy with purpose. Genes Dev. 2009; 23(21): 2461-2477.
6. Gentric G, Maillet V, Paradis V, Couton D, L'Hermitte A, Panasyuk G, et al. Oxidative stress promotes pathologic polyploidization in nonalcoholic fatty liver disease. J Clin Invest. 2015; 125(3): 981-992.
7. Hessen D. Solar radiation and life, In: Solar Radiation and Human Health. Bjertness E. (ed.). Norweg Acad Sci Lett. 2008; 123-137.
8. Brochmann C, Brysting AK, Alsos IG, Borgen L, Grundt HH, Scheen AC, et al. Polyploidy in arctic plants. Biol J Linn Soc. 2004; 82: 521-536.
9. Rothschild LJ. The influence of UV radiation on protistan evolution. J Euk Micro. 1999; 46: 548-555.
10. Le Comber SC, Smith C. Polyploidy in fishes: patterns and processes. Biol J Linn Soc. 2004; 82: 431-442.
11. Payne AP. The Harderian gland: a tercentennial review. J Anat. 1994; 185: 1-49.
12. Djeridane Y. The harderian gland and its excretory duct in the Wistar rat. A histological and ultrastructural study. J Anat. 1994; 184(3): 553-566.
13. Saadi-Brenkia O, Haniche N, Bendjelloul M. Light and electron microscopic studies of the Gerbillus tarabuli (Thomas, 1902) Harderian gland. Zoolog Sci. 2013; 30(1): 53-59.
14. Djeridane Y. The Harderian gland of desert rodents: a histological and ultrastructural study. J Anat. 1992; 180: 465-480.
15. Coto-Montes A, Boga JA, Tomas-Zapico C, Rodríguez-Colunga MJ, Martínez-Fraga J, Tolivia-Cadrecha J, et al. Physiological oxidative stress model: Syrian hamster Harderian gland-sex differences in antioxidant enzymes. Free Radic Biol Med. 2001; 30: 785-792.
16. Tomas-Zapico C, Martinez-Fraga J, Rodriguez-Colunga MJ, Tolivia D, Hardeland R, Coto-Montes A. Melatonin protects against delta-aminolevulinic acid-induced oxidative damage in male Syrian hamster Harderian glands. Int J Biochem Cell Biol. 2002; 34: 544-553.
17. Coto-Montes A, García-Macía M, Caballero B, Sierra V, Rodríguez-Colunga MJ, Reiter RJ, Vega-Naredo I. Analysis of constant tissue remodeling in Syrian hamster Harderian gland: intra-tubular and inter-tubular syncytial masses. J Anat. 2013; 222(5): 558-569.
18. Chevret P, Dobigny G. Systematics and evolution of the subfamily Gerbillinae (Mammalia, Rodentia, Muridae). Mol Phylogenet Evol. 2005; 35: 674-688.
19. Reynolds ES. The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J Cell Biol. 1963; 17: 208-212.
20. Sakai T, Yohro T. A histological study of the Harderian gland of Mongolian gerbils, Meriones meridianus. Anat Rec. 1981; 200 (3): 259-270.
21. Johnston HS, Mc Gadey J, Thompson GG, Moore MR, Payne AP. The Harderian gland, its secretory and porphyrin content in the Mongolian gerbil (Meriones unguiculatus). J Anat. 1983; 137(3): 615-630.
22. Shirama K, Furuya T, Takeo Y, Shimizu K, Maekawa K. Influences of some endocrine glands and of hormone replacement on the porphyrins of the Harderian glands of mice. J Endocrinol. 1981; 91(2): 305-311.
23. Krause WJ, McMenamin PG. Morphological observations on the harderian gland of the North American opossum (Didelphis virginiana). Anat Embryol. 1992; 186(2): 145-152.
24. Djeridane Y. Comparative histological and ultrastructural studies of the Harderian gland of rodents. Microsc Res Tech. 1996; 34(1): 28-38.
25. Sabry I, Al Azemi M, Al Ghaith L. The Harderian gland of the Cheesman's gerbil (Gerbillus cheesmani) of the Kuwaiti desert. Eur J Morphol. 2000; 38: 97-108.
26. Costin GE, Hearing VJ. Human skin pigmentation: melanocytes modulate skin color in response to stress. FASEB J. 2007; 21(4): 976-994.
27. Frawley LE, Orr-Weaver T L. Polyploidy. Current Biology 2015; 25(9): R353-R358.
28. Wendel J F. Genome evolution in polyploids. Plant Mol. Biol. 2000; 42: 225-249.
29. Comai L, Tyagi AP, Winter K, Holmes-Davis R, Reynolds SH, Stevens Y, Byers B. Phenotypic instability and rapid gene silencing in newly formed Arabidopsis allotetraploids. Plant Cell. 2000; 12: 1551-1567.
30. Woodhouse M, Burkart-Waco D, Comai L. Polyploidy. Nature Education. 2009; 2(1): 1.
31. Barkla BJ, Rhodes T, Tran KT, Wijesinghege C, Larkin JC, Dassanayake M. Making epidermal bladder cells bigger: developmental- and salinity-induced endopolyploidy in a model halophyte. Plant Physiol. 2018; 177: 615-632.
32. Van de Peer Y, Meyer A. Large-scale gene and ancient genome duplications. In: The evolution of the genome (ed. Gregory TR). 2005; 330-363.
33. Miettinen TP, Caldez MJ, Kaldis P, Björklund M. Cell size control – a mechanism for maintaining fitness and function. Bioessays. 2017; 39: 1700058.
34. Fenech M. Micronuclei and their association with sperm abnormalities, infertility, pregnancy loss, pre-eclampsia and intra-uterine growth restriction in humans. Mutagenesis. 2011; 26: 63-67.
35. Terradas M, Martín M, Genescà A. Impaired nuclear functions in micronuclei results in genome instability and chromothripsis. Arch Toxicol. 2016; 90: 2657-2667.
36. Crasta K, Ganem NJ, Dagher R, Lantermann AB, Ivanova EV, Pan Y, Nezi L, et al. DNA breaks and chromosome pulverization from errors in mitosis. Nature. 2012; 482: 53-58.
37. Zhang CZ, Spektor A, Cornils H, Francis JM, Jackson EK, Liu S, et al. Chromothripsis from DNA damage in micronuclei. Nature. 2015; 522: 179-184.
38. Beedanagari S, Vulimiri SV, Bhatia S, Mahadevan B. Genotoxicity biomarkers. Biomark Toxicol. 2014; 729-742.
How to Cite
Saadi-Brenkia, O.; Lounis, S.; Hanniche, N. Polyploidy Promotes Harderian Glands Function under Photo-Oxidative Stress in Desert Rodents. European Journal of Biological Research 2021, 11, 348-355.
Research Articles