Microbial-aided phytoremediation of heavy metals contaminated soil: a review

  • Sesan Abiodun Aransiola Bioresources Development Centre, National Biotechnology Development Agency, KM 5 Ogbomoso/Iresapa Road, P.M.B. 3524, Onipanu, Ogbomoso, Nigeria
  • Udeme Josiah Joshua Ijah Department of Microbiology, Federal University of Technology, PMB 65, Minna, Nigeria
  • Olabisi Peter Abioye Department of Microbiology, Federal University of Technology, PMB 65, Minna, Nigeria
  • J. D. Bala Department of Microbiology, Federal University of Technology, PMB 65, Minna, Nigeria
Keywords: Heavy metal, Microbial, Phytoremediation, Soil, Contamination, Pollution


Anthropogenic exercises as well as industrial enterprise and agricultural practices contribute considerably to the degradation and contamination of environment that considerably affects the soil. The normal physical and chemical know-how soil washing used for soil remediation render the land useless as a medium for plant growth, as they take away all biological activities. Others are labor-intensive and have high maintenance value phytoremediation, a cheaper and sustainable in situ remediation technique was so thought of. This data can enable proposing solutions to issues of contamination and eventually convalescent sites and soils. However, plants don't have the aptitude to degrade several soil waste matters particularly the organic pollutant. It's so imperative to require advantage of the degrading ability of soil microorganisms. This review so focuses on phytoremediation techniques improved by microbial colonies.

DOI: http://dx.doi.org/10.5281/zenodo.3244176


Download data is not yet available.


1. Ana PP, Natalia RE. Status of local soil contamination; A report by the Joint Research Centre (JRC) in collaboration with the European Information and Observation Network (Eionet) National Reference Centres for Soil, 2018.

2. Wu Q, Leung JYS, Geng X, Chen S, Huang X, Li H, et al. Heavy metal contamination of soil and water in the vicinity of an abandoned e-waste recycling site: implications for dissemination of heavy metals. Sci Total Environ. 2015; 506-507: 217-225.

3. Alori E, Fawole O. Phytoremediation of soils contaminated with aluminium and manganese by two arbuscular mycorrhizal fungi. J Agric Sci. 2012; 4: 246-252.

4. Khan S, Afzal M, Iqbal S, Khan QM. Plant-bacteria partnerships for the remediation of hydrocarbon contaminated soils. Chemosphere. 2013; 90: 1317-1332.

5. Glick BR. Phytoremediation: synergistic use of plants and bacteria to clean up the environment. Biotechnol Adv. 2003; 21(5): 383-393.

6. Glick BR. Using soil bacteria to facilitate phytoremediation bacteria. Biotechnol Adv. 2010; 28: 367-374.

7. Kroopnick PM. Vapor abatement costs analysis methodology for calculating life cycle costs for hydrocarbon vapour extracted during soil venting. In: Wise DL, Trantolo DJ, eds. Remediation of hazardous waste. Marcel Dekker, New York, 1994: 779-790.

8. Parker R. Environmental restoration technologies. EMIAA yearbook. 1994: 169-171.

9. Danh LT, Truong P, Mammucari R, Tran T, Foster N. Vetiver grass, Vetiveria zizanioides: a choice plant for phytoremediation of heavy metals and organic wastes. Int J Phytorem. 2009; 11: 664-691.

10. Haque N, Peralta-Videa JR, Jones GL, Gill TE, Gardea-Torresdey JL. Screening the phytoremediation potential of desert broom (Baccharis sarothroides Gray) growing on mine tailings in Arizona, USA. Environ Pollut. 2008; 153: 362-368.

11. Tiller KG. Heavy metals in soils and their environmental significance. Adv Soil Sci. 1989; 9: 113-141.

12. Paulo JC, Pratas FJ, Varun M, D’Souza R, Paul MS. Phytoremediation of soils contaminated with metals and metalloids at mining areas: potential of native flora. In: Environmental Risk Assessment of Soil Contamination. InTech Open, 2014: 485-517.

13. Chehregani A, Malayer B. Removal of heavy metals by native accumulator plants. IJAB. 2007; 9(3): 462-465.

14. Adriano DC. Trace elements in terrestrial environments: biogeochemistry, bioavailability and risks of metals. 2nd edn. Springer-Verlag New York, Berlin Heidelberg, 2001.

15. Rubio C, González Weller D, Martín-Izquierdo RE. El zinc: oligoelemento esencial. Nutrición Hospit. 2007; 22(1): 101-107.

16. Adams A, Raman A, Hodgkins D. How do the plants used in phytoremediation in constructed wetlands, a sustainable remediation strategy, perform in heavy-metal contaminated mine sites. Wat Environ J. 2013; 27(3): 373-386.

17. Ross SM. Sources and forms of potentially toxic metals in soil-plant systems. In: Ross SM, ed. Toxic metals in soil-plant systems. John Wiley & Sons, 1994: 3-25.

18. Gough LP. Understanding our fragile environment, lessons from geochemical studies. USGS Circular 1105, United States Government Printing Office, Washington, DC, 1993.

19. Mitchell RL. Trace elements in soil. In: Bear FE, ed. Chemistry of the soil. Reinhold Publishing Corporation, New York; Chapman and Hall, London; 1964: 320-368.

20. EPA. (U.S. Environmental Protection Agency), Introduction to Phytoremediation. National Risk Management Research Laboratory, EPA/600/R-99/107, 2000, http://www.clu- in.org/download/remed/introphyto.pdf

21. Rodriguez L, Lopez-Bellido FJ, Carnicer A, Recreo F, Tallos A, Monteagudo JM. Mercury recovery from soils by phytoremediation. In: Book of environmental chemistry. Springer, Berlin, 2005: 197-204.

22. Tangahu BV, Sheikh Abdullah SR, Basri H, Idris M, Anuar N, Mukhlisin M. A review on heavy metals (As, Pb, and Hg) uptake by plants through phytoremediation. Int J Chem Eng. 2011; 2011: ID 939161.

23. Ismail S. Phytoremediation: a green technology. Iran J Plant Physiol. 2012; 3(1): 567-576.

24. Cameselle C, Chirakkara RA, Reddy KR. Electrokinetic-enhanced phytoremediation of soils: status and opportunities. Chemosph. 2013; 93(4): 626-636.

25. Abioye OP, Ijah UJJ, Aransiola SA. Phytoremediation of soil contaminants by biodiesel plant Jatropha curcas. Chapter 4. In: Bauddh K. et al., eds. Phytoremediation potential of bioenergy plants. Springer Nature Singapore Pte Ltd. 2017.

26. Pehlivan E, Özkan AM, Dinç S, Parlayici S. Adsorption of Cu2+ and Pb2+ ion on dolomite powder. J Hazard Mater. 2009; 167(1-3): 1044-1049.

27. Roy S, Labelle S, Mehta P. Phytoremediation of heavy metal and PAH-contaminated brown field sites. Plant Soil. 2005; 272(1-2): 277-290.

28. Ampiah-Bonney RJ, Tyson JF, Lanza GR. Phytoextraction of arsenic from soil by Leersia oryzoides. Int J Phytoremed. 2007; 9(1): 31-40.

29. Vaclavikova M, Gallios GP, Hredzak S, Jakabsky S. Removal of arsenic from water streams: an overview of available techniques. Clean Techn Environ Policy. 2008; 10(1): 89-95.

30. Chutia P, Kato S, Kojima T, Satokawa S. Arsenic adsorption from aqueous solution on synthetic zeolites. J Hazard Mater. 2009; 162(1): 440-447.

31. Traunfeld JH, Clement DL. Lead in garden soils. Home and garden. Maryland Cooperative Extention, University of Maryland, 2001, http://www.hgic.umd.edu/media/documents/ hg18.pdf

32. Cho-Ruk K, Kurukote J, Supprung P, Vetayasuporn S. Perennial plants in the phytoremediation of lead contaminated soils. Biotechnol. 2006; 5(1): 1-4.

33. Resaee A, Derayat J, Mortazavi SB, Yamini Y, Jafarzadeh MT. Removal of mercury from chlor-alkali industry wastewater using Acetobacter xylinum cellulose. Am J Environ Sci. 2005; 1(2): 102-105.

34. Aransiola SA, Ijah UJJ, Abioye OP. Phytoremediation of lead polluted soil by Glycine max L. Appl Environ Soil Sci. 2013: ID 631619.

35. Kramer U. Phytoremediation: novel approaches to cleaning up polluted soils. Curr Opin Biotechnol. 2005; 16: 133-141.

36. Milner MJ, Kochian LV. Investigating heavy-metal hyperaccumulation using Thlaspi caerulescens as a model system. Ann Bot. 2008; 102: 3-13.

37. Lu L, Tian S, Yang X, Wang X, Brown P, Li T. Enhanced root-to-shoot translocation of cadmium in the hyperaccumulating ecotype of Sedum alfredii. J Exp Bot. 2008; 59: 3203-3213.

38. Deng D, Deng J, Li J, Zhang J, Hu M, Lin Z. Accumulation of zinc, cadmium, and lead in four populations of Sedum alfredii growing on lead/zinc mine spoils. J Integr Plant Biol. 2008; 50: 691-698.

39. Seth CS. A review on mechanisms of plant tolerance and role of transgenic plants in environmental clean-up. Bot Rev. 2012; 78: 32-62.

40. Chaney RL, Angle JS, McIntosh MS, Reeves RD, Li YM, Brewer EP. Using hyperaccumulator plants to phytoextract soil Ni and Cd. Z Naturforsch C. 2005; 60: 190-198.

41. Clemens S, Palmgren MG, Kraemer U. A long way ahead: understanding and engineering plant metal accumulation. Trends Plant Sci. 2002; 7: 309-315.

42. Gleba D, Borisjuk NV, Borisjuk LG, Kneer R, Poulev A, Skarzhinskaya M, et al. Use of plant roots for phytoremediation and molecular farming. Proc Nat Acad Sci. 1999; 96: 5973-5977.

43. Dushenkov S, Kapulnik Y, Blaylock M, Sorochisky B, Raskin I, Ensley B. Phytoremediation: a novel approach to an old problem. In: Wise DL, ed. Global environmental biotechnology. Elsevier, Amsterdam, 1997: 563-572.

44. Alkorta I, Hernandez-Allica J, Becerril JM, Amezaga I, Albizu I, Garbisu I. Recent findings on the phytoremediation of soils contaminated with environmentally toxic heavy metals and metalloids such as Zn, Cd, Pb and arsenic. Rev Environ Sci Biotechnol. 2004; 3: 71-90.

45. Nehnevajova E, Herzig R, Erismann KH, Schwitzgue´bel JP. In vitro breeding of Brassica juncea L to enhance metal accumulation and extraction properties. Plant Cell Rep. 2007; 26: 429-437.

46. Carlos G, Alkorta I. Phytoextraction: a cost-effective plant-based technology for the removal of metals from the environment. Biores Technol. 2001; 77: 229-236.

47. Bhargava A, Carmona F, Bhargava M, Srivastava S. Approaches for enhanced phytoextraction of heavy metals. J Environ Manage. 2012; 105: 103-120.

48. Spaczynski M, Seta-Koselska A, Patrzylas P, Betlej A, Skorzynska-Polit E. Phytodegradation and biodegradation in rhizosphere as efficient methods of reclamation of soil contaminated by organic chemicals (a review). Acta Agrophys. 2012; 19: 155-169.

49. McCutcheon SC, Schnoor JL. Phytoremediation, transformation and control of contaminants. Wiley, Hoboken, NJ, 2003.

50. Boyajian GE, Carreira LH. Phytoremediation: a clean transition from laboratory to marketplace? Nat Biotechnol. 1997; 15: 127-128.

51. Adesodun JK, Atayese MO, Agbaje TA, Osadiaye BA, Mafe OF, Soretire AA. Phytoremediation potentials of sunflowers (Tithonia diversifolia and Helianthus annuus) for metals in soils contaminated with zinc and lead nitrates. Water Air Soil Pollut. 2010; 207: 195-201.

52. Bell TH, Joly S, Pitre FE, Yergeau E. Increasing phytoremediation efficiency and reliability using novel omics approaches. Trends Biotechnol. 2014; 32: 271-280.

53. Lebeau T. Bioaugmentation for in situ soil remediation: how to ensure the success of such a process. In: Singh A, et al., eds. Bioaugmentation, biostimulation and biocontrol.Springer, Berlin, 2011: 129-186.

54. Rahman KS, Rahman T, Lakshmanaperumalsamy P, Banat IM. Occurrence of crude oil degrading bacteria in gasoline and diesel station soils. J Basic Microbiol. 2002; 42: 284-291.

55. de Souza MP, Chu D, Zhao M, Zayed AM, Ruzin SE, Schichnes D, Terry N. Rhizosphere bacteria enhance selenium accumulation and volatilization by Indian mustard. Plant Physiol. 1999; 119(2): 565-574.

56. Stout LM, Dodova EN, Tyson JF, Nusslein K. Phytoprotective influence of bacteria ongrowth and cadmium accumulation in the aquatic plant lemna minor. Water Res. 2010; 44(17): 4970-4979.

57. Meharg AA, Cairney JW. Co-evolution of mycorrhizal symbionts and their hosts to metal-contaminated environments. Adv Ecol Res. 2000; 30: 69-112.

58. Lakatos G, Kiss M, Mezzaros I. Heavy metal content of common reed (Phragmites australis (Cav.)Trin. ex Steudel) and its periphyton in Hungarian shallow standing waters. Hydrobiologia. 1999; 415: 47-53.

59. Bruins MR, Kapil S, Oehme FW. Microbial resistance to metals in the environment. Ecotoxicol Environ Saf. 2000; 45: 198-207.

60. Baath E. Effects of heavy metals in soil on microbial processes and populations. Water Air Soil Pollut. 1989; 47: 335-379.

61. Baath E, Diaz-Ravina M, Bakken LR. Microbial biomass, community structure and metal tolerance of a naturally Pb-enriched forest soil. Microb Ecol. 2005; 50: 496-505.

62. Chander K, Dyckmans J, Joergensen R, Meyer B, Raubuch M. Different sources of heavy metals and their long-term effects on soil microbial properties. Biol Fertil Soils. 2001; 34(4): 241-247.

63. Mengoni A, Grassi E, Barzanti R, Biondi EG, Gonnelli C, Kim CK, et al. Genetic diversity of bacterial communities of serpentine soil and of rhizosphere of the nickel-hyperaccumulator plant Alyssum bertolonii. Microb Ecol. 2004; 48: 209-217.

64. Akerblom S, Baath E, Bringmark L, Bringmark E. Experimentally induced effects of heavy metal on microbial activity and community structure of forest mor layers. Biol Fertil Soils. 2007; 44: 79-91.

65. Schlegel C, von Neumann CP, Neumeyer F, Richter A, Strauch S, de Boer J, et al. Depopulation of 180 Tam by Coulomb excitation and possible astrophysical consequences. Phys Rev C Nucl Phys. 1994; 50: 2198-2204.

66. Lodewyckx C, Mergeay M, Vangronsveld J, Clijsters H, van der Lelie D. Isolation, characterization, and identification of bacteria associated with the zinc hyperaccumulator Thlaspi caerulescens subsp. calaminaria. Int J Phytorem. 2002; 4: 101-115.

67. Becerra-Castro C, Monterroso C, Garcia-Leston M, Prieto-Fernandez A, Acea MJ, Kidd PS. Rhizosphere microbial densities and trace metal tolerance of the nickel hyperaccumulator Alyssum serpyllifolium subsp. lusitanicum. Int J Phytorem. 2009; 11: 525-541.

68. Kidd P, Barcelob J, Bernal MP, Navari-Izzo F, Poschenriederb C, Shileve S, et al. Trace element behaviour at the root-soil interface: implications in phytoremediation. Environ Exp Bot. 2009; 67: 243-259.

69. Doty SL. Enhancing phytoremediation through the use of transgenic and endophytes. New Phytol. 2008; 179: 318-333.

70. Taghavi S, van der Lelie D, Hoffman A, Zhang YB, Walla MD, Vangronsveld J, et al. Genome sequence of the plant growth promoting endophytic bacterium Enterobacter sp. PLoS Genet. 2010; 638(6): e1000943.

71. Luo S, Wan Y, Xiao X, Guo H, Chen L, Xi Q. Isolation and characterization of endophytic bacterium LRE07 from cadmium hyperaccumulator Solanum nigrum L and its potential for remediation. Appl Microbiol Biotechnol. 2011; 89: 1637-1644.

72. Khade HW, Adholeya A. Arbuscular mycorrhizal association in plants growing on metalcontaminated and noncontaminated soils adjoining Kanpur tanneries, Uttar Pradesh, India. Water Air Soil Pollut. 2009; 202: 45-56.

73. Javaid A. Importance of arbuscular mycorrhizal fungi in phytoremediation of heavy metal contaminated soils. In: Khan MS, Zaidi A, Goel R, Musarrat J, eds. Biomanagement of metalcontaminated soils. Springer, New York, 2011.

74. Miransari M. Hyperaccumulators, arbuscular mycorrhizal fungi and stress of heavy metals. Biotechnol Adv. 2011; 29: 645-653.

75. Vamerali T, Bandiera M, Mosca G. Field crops for phytoremediation of metal-contaminated land: a review. Environ Chem Lett. 2010; 8: 1-17.

76. Bell TH, Joly S, Pitre FE, Yergeau E. Increasing phytoremediation efficiency and reliability using novel omics approaches. Trends Biotechnol. 2014; 32: 271-280.

77. Lin X, Li P, Li F, Zhang L, Zhou Q. Evaluation of plant microorganism synergy for the remediation of diesel fuel. Contam Soil Bull Environ Contam Toxicol. 2008; 81: 19-24.

78. Robinson B, Fernández JE, Madejón P, Marañón T, Murillo JM, Green S, Clothier B. Phytoextraction: an assessment of biogeochemical and economic viability. Plant Soil. 2003; 249: 117-125.

79. Guittonny-Philippe A, Masotti V, Höhener P, Boudenne JL, Viglione J, Laffont-Schwob I. Constructed wetlands to reduce metal pollution from industrial catchments in aquatic Mediterranean ecosystems: a review to overcome obstacles and suggest potential solutions. Environ Int. 2014; 64: 1-16.

80. Babalola OO. Beneficial bacteria of agricultural importance. Biotechnol Lett. 2010; 32: 1559-1570.

81. Visca P, Imperi F, Lamont IL. Pyoverdine siderophores: from biogenesis to biosignificance. Trends Microbiol. 2007; 15: 22-30.

82. Zhang X, Xu D, Zhu C, Lundaa T, Scherr KE. Isolation and identification of biosurfactant producing and crude oil degrading Pseudomonas aeruginosa strains. Chem Eng J. 2012; 209: 138-146.

83. Ullah A, Heng S, Munis MFH, Fahad S, Yang X. Phytoremediation of heavy metals assisted by plant growth promoting (PGP) bacteria: a review. Environ Exp Bot. 2015; 117: 28-40.

84. Raab A, Schat H, Meharg AA, Feldmann J. Uptake, translocation and transformation of arsenate and arsenite in sunflower (Helianthus annuus): formation of arsenic-phytochelatin complexes during exposure to high arsenic concentrations. New Phytol. 2005; 168(3): 551-558.

85. Prasad MVN. Aquatic plants for phytotechnology. In: Singh SN, Tripathi RD, eds. Environmental bioremediation technologies. Springer, Germany, 2007.

86. Farwell AJ, Vesely S, Nero V, Rodriguez H, Shah S, Dixon DG, Glick BR. The use of transgenic canola (B. napus) and plant growth-promoting bacteria to enhance plant biomass at a nickel-contaminated field site. Plant Soil. 2006; 288: 309-318.

87. Kuffner M, Puschenreiter M, Wieshammer G, Gorfer M, Sessitsch A. Rhizosphere bacteria affect growth and metal uptake of heavy metal accumulating willows. Plant Soil. 2008; 304: 35-44.

88. Cobbett CS. Phytochelatins and their role in heavy metal detoxification. Plant Physiol. 2000; 123: 825-833.

89. Cobbett C, Goldsbrough P. Phytochelatins and metallothioneins: roles in heavy metal detoxification and homeostasis. Annu Rev Plant Biol. 2002; 53: 159-182.

90. Gillam EMJ. Engineering cytochrome P450 enzymes. Chem Res Toxicol. 2008; 21: 220-231.

91. Ke HY, Sun JG, Feng XZ, Czako M, Marton L. Differential mercury volatilization by tobacco organs expressing a modified bacterial merA gene. Cell Res. 2001; 11: 231-236.

92. Doucleff M, Terry N. Pumping out the arsenic. Nat Biotechnol. 2002; 20: 1094-1095.

93. Sheng X, Xia JJ. Improvement of rape (Brassica napus) plant growth and cadmium uptake by cadmium-resistant bacteria. Chemosphere. 2006; 64: 1036-1042.

94. Cloutier-Hurteau B, Sauve S, Courchesne F. Influence of microorganisms on Cu speciation in the rhizosphere of forest soils. Soil Biol Biochem. 2008; 40: 2441-2451.

95. Wheeler CT, Hughes LT, Oldroyd J, Pulford ID. Effects of nickel on Frankia and its symbiosis with Alnus glutinosa (L.). Gaertn. Plant Soil. 2001; 23: 81-90.

96. Espinoza-Quinones FR, Modenes AN, Costa IL Jr, Palacio SM, Szymanski N, Trigueros DEG, et al. Kinetics of lead bioaccumulation from a hydroponic medium by aquatic macrophytes Pistia stratiotes. Water Air Soil Pollut. 2009; 203: 29-37.

97. Liu J, Liu S, Sun K, Sheng YH, Gu YJ, Gao YZ. Colonization on root surface by a phenanthrene-degrading endophytic bacterium and its application for reducing plant phenanthrene contamination. PLoS One. 2014; 9: e108249.

98. Afzal M, Yousaf S, Reichenauer TG, Kuffner M, Sessitsch A. Soil type affects plant colonization, activity and catabolic gene expression of inoculated bacterial strains during phytoremediation of diesel. J Hazard Mater. 2011; 186: 1568-1575.

99. Sun K, Liu J, Gao Y, Sheng Y, Kang F, Waigi MG. Inoculating plants with the endophytic bacterium Pseudomonas sp. Ph6-gfp to reduce phenanthrene contamination. Environ Sci Pollut Res 2015; 22(24): 19529-19537.

100. Zhu X, Ni X, Liu J, Gao YZ. Application of endophytic bacteria to reduce persistent organic pollutants contamination in plants. Soil Air Water. 2014; 42: 306-310.

101. Afzal M, Khan S, Iqbal S, Mirza MS, Khan QM. Inoculation method affects colonization and activity of Burkholderia phytofirmans PsJN during phytoremediation of diesel contaminated soil. Int J Biodeter Biodegrad. 2013; 85: 331-336.

102. Jabeen R, Ahmad A, Iqbal M. Phytoremediation of heavy metals: physiological and molecular mechanisms. Bot Rev. 2009; 75: 339-364.

103. Yadav R, Arora P, Kumar S, Chaudhury A. Perspectives for genetic engineering of poplars for enhanced phytoremediation abilities. Ecotoxicology. 2010; 19: 1574-1588.

104. Mleczek M, Kozłowska M, Kaczmarek Z, Magdziak Z, Goliński P. Cadmium and lead uptake by Salix viminalis under modified Ca/Mg ratio. Ecotoxicology. 2012; 20: 158-165.

105. Weyens N, Schellingen K, Dupae J, Croes S, van der Lelie D, Vangronsveld J. Can bacteria associated with willow explain differences in Cd accumulation capacity between different cultivars? J Biotechnol. 2010; 150: 291-292.

106. Adegbidi HG, Volk TA, White EH, Abrahamson LP, Briggs RD, Bickelhaupt DH Biomass and nutrient removal by willow clones in experimental bioenergy plantations in New York State. Biomass Bioenerg. 2001; 20: 399-411.

107. Miransari M. Hyperaccumulators, arbuscular mycorrhizal fungi and stress of heavy metals. Biotechnol Adv. 2011; 29: 645-653.

108. Prasad A, Kumar S, Khaliq A, Pandey A. Heavy metals and arbuscular mycorrhizal (AM) fungi can alter the yield and chemical composition of volatile oil of sweet basil (Ocimum basilicum L.). Biol Fertil Soils. 2011; 47: 853-861.

109. Farina R, Beneduzi A, Ambrosini A, de Campos SB, Lisboa BB, Wendisch V, et al. Diversity of plant growth-promoting rhizobacteria communities associated with the stages of canola growth. Appl Soil Ecol. 2012; 55: 44-52.

110. Jha Y, Subramanian RB, Patel S. Combination of endophytic and rhizospheric plant growth promoting rhizobacteria in Oryza sativa shows higher accumulation of osmoprotectant against saline stress. Acta Physiol Plant. 2011; 33: 797-802.

111. Tang S, Liao S, Guo J, Song Z, Wang R, Zhou X. Growth and caesium uptake responses of Phytolacca americana Linn. and Amaranthus cruentus L. grown on caesium contaminated soil to elevated CO2 or inoculation with a plant growth promoting rhizobacterium Burkholderia sp. D54, or in combination. J Hazard Mater. 2012; 198: 188-197.

112. Saleem M, Arshad M, Hussain S, Bhatti AS. Perspective of plant growth promoting rhizobacteria (PGPR) containing ACC deaminase in stress agriculture. J Ind Microbiol Biotechnol. 2007; 34: 635-648.

113. Ma Y, Prasad MNV, Rajkumar M, Freitas H. Plant growth promoting rhizobacteria and endophytes accelerate phytoremediation of metalliferous soils. Biotechnol Adv. 2011; 29: 248-258.

114. Rajkumar M, Noriharu A, Freitas H. Endophytic bacteria and their potential to enhance heavy metal phytoextraction. Chemosphere. 2010; 77: 153-160.

115. Lovley DR. Dissimilatory metal reduction. Annu Rev Microbiol. 1993; 47: 263-290.

116. Garbisu C, Alkorta I. Bioremediation: principles and future. J Clean Technol Environ Toxicol Occup Med. 1997; 6: 351-366.

117. Ow DW. Heavy metal tolerance genes: prospective tools for bioremediation. Resour Conserv Recycling. 1996; 18: 135-149.

118. Summers AO. The hard stuff: metals in bioremediation. Curr Opin Biotechnol. 1992; 3: 271-276.

119. Raskin I, Smith RD, Salt DE. Phytoremediation of metals: using plants to remove pollutants from the environment. Curr Opin Biotechnol. 1997; 8: 221-226.

120. Crowley DE, Wang YC, Reid CPP, Szaniszlo PJ. Mechanisms of iron acquisition from siderophores by microorganisms and plants. Plant Soil. 1991; 130: 179-198.

121. Salt DE, Prince RC, Pickering IJ, Raskin I. Mechanisms of cadmium mobility and accumulation in Indian mustard. Plant Physiol. 1995; 109: 1427-1433.

122. Dell’Amico E, Cavalca L, Andreoni V. Improvement of Brassica napus growth under cadmium stress by cadmium resistant rhizobacteria. Soil Biol Biochem. 2008; 40: 74-84.

123. Barakat MA, New trends in removing heavy metals from industrial wastewater. Arab J Chem. 2011; 4: 361-377.

124. Burd GI, Dixon DG, Glick BR. Plant growth promoting bacteria that decrease heavy metal toxicity in plants. Can J Microbiol. 2000; 46: 237-245.

125. Kumar V, Upadhyay N, Kumar V, Sharma S. A review on sample preparation and chromatographic determination of acephate and methamidophos in different samples. Arab J Chem. 2015; 8(5): 624-631.

126. Prapagdee B, Chanprasert M, Mongkolsuk S. Bioaugmentation with cadmium-resistant plant growth-promoting rhizobacteria to assist cadmium phytoextraction by Helianthus annuus. Chemosphere. 2013; 92: 659-666.

127. Jing YX, Yan JL, He HD, Yang DJ, Xiao L, Zhong T, et al. Characterization of bacteria in the rhizosphere soils of Polygonum pubescens and their potential in promoting growth and Cd Pb Zn uptake by Brassica napus. Int J Phytoremed. 2014; 16: 321-333.

128. Hadi F, Fano A. Effect of diazotrophs (Rhizobium and Azobactor) on growth of maize (Zea mays L.) and accumulation of lead (Pb) in different plant parts. Pak J Bot. 2010; 42: 4363-4370.

129. Chen L, Luo S, Li X, Wan Y, Chen J, Liu C. Interaction of Cd hyperaccumulator Solanum nigrum L. and functional endophyte Pseudomonas sp. Lk9 on soil heavy metals uptake. Soil Biol Biochem. 2014; 68: 300-308.

130. Zhang Y, He L, Chen Z, Wang Q, Qian M, Sheng X. Characterization of ACC deaminase-producing endophytic bacteria isolated from copper-tolerant plants and their potential in promoting the growth and copper accumulation of Brassica napus. Chemosphere. 2011; 83: 57-62.

131. Liang X, He CQ, Ni G, Tang GE, Chen XP, Lei YR. Growth and Cd accumulation of Orychophragmus violaceus as afected by inoculation of Cd tolerant bacterial strains. Pedosphere. 2014; 24: 322-329.

132. Sheng XF, Xia JJ, Jiang CY, He LY, Qian M. Characterization of heavy metal-resistant endophytic bacteria from rape Brassica napus roots and their potential in promoting the growth and lead accumulation of rape. Environ Pollut. 2008; 156: 1164-1170.

133. Wężowicz K, Turnau K, Anielska T, Zhebrak I, Gołuszka K, Błaszkowski J, Rozpądek P. Metal toxicity differently affects the Iris pseudacorus-arbuscular mycorrhiza fungi symbiosis in terrestrial and semi-aquatic habitats. Environ Sci Pollut Res. 2015; 22: 19400-19407.

134. Srivastava S, Verma PC, Chaudhary V, Singh N, Abhilash PC, Kumar KV, et al. Inoculation of arsenic-resistant Staphylococcus arlettae on growth and arsenic uptake in Brassica juncea (L.) Czern. Var. R-46. J Hazard Mater. 2013; 262: 1039-1047.

135. He CQ, Tan GE, Liang X, Du W, Chen YL, Zhi GY, Zhu Y. Effect of Zn tolerant bacterial strains on growth and Zn accumulation in Orychophragmus violaceus. Appl Soil Ecol. 2010; 44: 1-5.
How to Cite
Aransiola, S.; Ijah, U.; Abioye, O.; Bala, J. Microbial-Aided Phytoremediation of Heavy Metals Contaminated Soil: A Review. European Journal of Biological Research 2019, 9, 104-125.
Review Articles