Antifungal activity of the rhizome extracts of *Pulsatilla vulgaris* against *Candida glabrata*

Grażyna Łaska*, Aneta Sienkiewicz

Department of Agri-Food Engineering and Environmental Management, Białystok University of Technology, Wiejska 45A, 15-351 Białystok, Poland

* Corresponding author: Phone: +48 602499654; E-mail: g.laska@pb.edu.pl

Received: 30 March 2019; **Revised submission:** 17 May 2019; **Accepted:** 23 May 2019

Copyright: © The Author(s) 2019. Licensee Joanna Bródkę, Poland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/)

ABSTRACT: *Pulsatilla vulgaris* Mill. (“Pasque flower”, Ranunculaceae) is rare and a threatened plant species in Europe. It produces biologically active secondary metabolites. *P. vulgaris* is also known herbal drug used for centuries in traditional Chinese and Korean medicine. The rhizomes of *P. vulgaris* have been traditionally used for treatment of headaches, neuralgia, insomnia, hyperactivity, bacterial skin infections, septicemia, cough and bronchitis. In the present study, the extracts of leaves and rhizomes of *P. vulgaris* were evaluated for their antifungal, antimicrobial, antimalarial and cytotoxic activities. The results showed the antifungal activity of crude extracts of the rhizome of *P. vulgaris* against the yeast *Candida glabrata* with an IC₅₀ of 11 µg/ml. These results indicate that the selected medicinal plant could be further investigated for identifying compounds that may be responsible for the observed activity and that may represent new leads in fungal drug discovery.

Keywords: *Pulsatilla vulgaris* subsp. vulgaris; Ranunculaceae; Leaves and rhizomes extracts; Biological activity; Microbiological assays.

1. INTRODUCTION

Phytochemical studies of *Pulsatilla* species revealed the presence of a high diversity of secondary metabolites [1]. Many bioactive compounds have been reported from the extract of *Pulsatilla* species such as anemonin [2] and protonemomin [3, 4], hederagenin [5], oleanolic saponins and lupane-type saponins [6, 7] and antimicrobial cinnamic acid derivatives [8] or anti-acne activities of pulsaquinone, hydropulsaquinone and 1,4-quinone derivatives [9]. The triterpene saponins were isolated from *P. chinensis* (Bunge) Regel [10-12], *P. koreana* Nakai [2, 6, 13], *P. cernua* (Thunb.) Bercht. et Opiz. [14, 15], *P. dahurica* (Fisch. ex DC.) Spreng. [16], *P. turczaninovii* Kryl. et Serg. [17], *P. nigricans* Storck [18], *P. pratensis* (L.) Mill. [19] and *P. patens* subsp. *multifida* (G.A. Pritzel) Zämelis [20] (Table 1). Polyphenolic compounds such as flavonoids and anthocyanidins are produced by *P. montana* subsp. *balcana* (Velen.) Zämelis & Paegle, *P. halleri* subsp. *rhodopaea* (Stoj. et Stef.) K. Krause and *P. slaviankae* (Zimmer.) Jordanov & Kožuharov [21]. Chromatographic fractionation of the root extract from *P. patens* subsp. *patens* (L.) Mill. collected in Poland resulted in the isolation of three known oleanane-type glycosides identified as hederagenin 3-O-β-D-glucopyranoside, hederagenin 3-O-β-D-galactopyranosyl-(1→2)-β-D-glucopyranoside [22], and saponin D [23]. In the course of our studies on medicinal plants we evaluated the extracts of leaves and rhizomes of...
Pulsatilla vulgaris Mill. for their antifungal, antimicrobial, antimalarial activities, and cytotoxicity to mammalian cell lines.

Table 1. Common *Pulsatilla* species in medicine.

<table>
<thead>
<tr>
<th>Species</th>
<th>Action</th>
<th>Main components</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pulsatilla patens subsp. multifida</td>
<td>antifungal</td>
<td>triterpene saponins</td>
<td>[20]</td>
</tr>
<tr>
<td>Pulsatilla koreana</td>
<td>antimicrobial</td>
<td></td>
<td>[2, 6, 13]</td>
</tr>
<tr>
<td>Pulsatilla chinensis</td>
<td>antitumor/cytotoxic</td>
<td></td>
<td>[10-12]</td>
</tr>
<tr>
<td>Pulsatilla cernua</td>
<td>molluscicidal</td>
<td></td>
<td>[14, 15]</td>
</tr>
<tr>
<td>Pulsatilla dahurica</td>
<td>antidiabetic</td>
<td></td>
<td>[16]</td>
</tr>
<tr>
<td>Pulsatilla turczaninovii</td>
<td>antitumor/cytotoxic</td>
<td></td>
<td>[17]</td>
</tr>
<tr>
<td>Pulsatilla montana subsp. balcana</td>
<td>antioxidant</td>
<td>phenolics</td>
<td>[21]</td>
</tr>
<tr>
<td></td>
<td>antibacterial</td>
<td>flavonoids</td>
<td></td>
</tr>
<tr>
<td></td>
<td>antifungal</td>
<td>anthocyanidins</td>
<td></td>
</tr>
<tr>
<td></td>
<td>antiviral</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>hepatoprotective</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>anticancer</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>anti-inflammatory</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The species of *P. vulgaris* was not extensively studied. Although the first report on pharmacodynamic properties, the distribution of saponins and tannins in this plant as well as pharmacology of isolated compounds came in 20th and 40th of the last century [24-26], they were followed only recently by few works on physiology [27, 28], genetic characteristics of the species [29, 30], ecology [31, 32] and various aspects of developmental biology [33]. In the fresh leaves and rhizomes of *P. vulgaris* the presence of the glycoside ranunculin was observed, which is converted to anemonine when the plant is dried [34, 35]. GC-MS analysis of the silylated methanolic extract of the leaves and rhizomes of *P. vulgaris* in our laboratories revealed the presence of carboxylic acids, such as benzoic, caffeic, malic, and succinic acids [5].

Relevant pharmacologic information regarding *P. vulgaris* is very scarce [9, 36-38]. However, the study done by Saify et al. [39] demonstrates the ability of *P. vulgaris* to reduce smooth muscle spasm. The extract from plant material appears to support the traditional use of this species as an antispasmodic [39]. This extract also can protect human cells against combined xenobiotic effects [40]. An important active constituent of *P. vulgaris* is protoanemonin [41-43]. Protoanemonin has been reported to have antibacterial, antimalarial and antifungal activity, however, it has been found to be cytotoxic as well. Plant extract from *P. vulgaris* showed antibacterial activity and inhibited the growth of *Escherichia coli*, *Staphylococcus aureus* and *Candida albicans* [44]. Due to the lack of current pharmacologic information about this species a study that examined the effect of protoanemonin which was extracted from *P. chinensis* was reviewed. Pharmacological study of secondary metabolites from *P. chinensis* showed that this compound possess anti-inflammatory effect on intestinal cells [45]. Additionally, analyses of biologically active metabolites from *P. koreana* showed that protoanemonin possesses antifungal activity and acts as an antibiotic [46]. Kanetoshi et al. [37] estimated that plant extract from *P. vulgaris* contains anticancer components active to three cell lines.

P. vulgaris is confined to dry grasslands, in sparsely wooded pine forests or meadows, often on a sunny sloping side with calcium-rich soil, where it grows at an altitude between 110-580 m. It grows well in fertile, humusy, gritty, and medium moisture well-drained soils in full sun to light shade. The best performance occurs in cool climates where plants are also more apt to tolerate drier conditions. There are three distinguishing subspecies of *P. vulgaris*, *P. vulgaris* subsp. *vulgaris*, subsp. *grandis* (Wender.) Zamels and subsp. *gotlandica* (Johanss.) Zamels & Paegle.
2. MATERIALS AND METHODS

2.1. Plant material

The leaves and rhizomes of *P. vulgaris* subsp. *vulgaris* were obtained from cultivation at the Herbarium “The Herbal Corner” located in Podlaskie Province, in North-Eastern Poland in May 2013 and identified by Prof. Grażyna Łaska from the Białystok University of Technology, Faculty of Civil and Environmental Engineering, Poland.

2.2. General experimental procedures

The plant material in the form of crude rhizomes (56.1 g) and leaves (21.8 g) was extracted by accelerated solvent extraction (ASE) method (Buchi E-916) with 80% methanol and evaporated under reduced pressure. The crude extracts of rhizomes (0.8 g) and leaves (0.7 g) were resolved in 99.8% methanol and analyzed for their antimicrobial and antimalarial activities. The rhizome extract was also tested for cytotoxicity against cancer and healthy mammalian cell lines.

2.3. Antimicrobial assay

All organisms were obtained from the American Type Culture Collection (Manassas, VA) and include the fungi *Candida albicans* ATCC 90028, *C. glabrata* ATCC 90030, *C. krusei* ATCC 6258, *Cryptococcus neoformans* ATCC 90113, and *Aspergillus fumigatus* ATCC 204305 and the bacteria *Staphylococcus aureus* ATCC 29213, methicillin-resistant *S. aureus* ATCC 33591 (MRS), *Escherichia coli* ATCC 35218, *Pseudomonas aeruginosa* ATCC 27853, and *Mycobacterium intracellulare* ATCC 23068. Susceptibility testing was performed using a modified version of the CLSI (formerly NCCLS) methods [47-50]. *M. intracellulare* was tested using a modified method of Franzblau et al. [51]. Samples were serially-diluted in 20% DMSO/saline and transferred in duplicate to 96-well flat bottom microplates. Microbial inocula were prepared by correcting the OD_{630} of microbe suspensions in incubation broth to afford final target inocula. Drug controls [Ciprofloxacin (ICN Biomedicals, USA) for bacteria and Amphotericin B (ICN Biomedicals, Ohio) for fungi] were included in each assay. All organisms were read at either 530 nm using the Biotek Powerwave XS plate reader (Bio-Tek Instruments, Vermont) or 544 ex/590 em, (*M. intracellulare, A. fumigatus*) using the Polarstar Galaxy Plate Reader (BMG LabTechnologies, Germany) prior to and after incubation. Minimum fungicidal or bactericidal concentrations were determined by removing 5 µL from each clear well, transferring to agar and incubating. The MFC/MBC was defined as the lowest test concentration that kills the organism (allows no growth on agar).

2.4. Assay for antimalarial activity

The antimalarial activity was determined against chloroquine sensitive (D6) strain of *Plasmodium falciparum* by measuring plasmodial LDH activity according to the procedure of Makler and Hinrichs [52]. A suspension of red blood cells infected with *P. falciparum* (200 µL, with 2% parasitemia and 2% hematocrit in RPMI 1640 medium supplemented with 10% human serum and 60 µg/ml amikacin) was added to the wells of a 96-well plate containing 10 µl of diluted sample. The plate was incubated at 37°C, for 72 h in a modular incubation chamber with 90% N₂, 5% O₂, and 5% CO₂. Parasitic LDH activity was determined by mixing 20 µl of the incubation mixture with 100 µl of the MalstatTM reagent (Flow Inc., Portland, OR) and incubating at room temperature for 30 min. Twenty microliters of a 1:1 mixture of NBT/PES (Sigma, St. Louis, MO) was then added and the plate was further incubated in the dark for 1 h. The reaction was then stopped by adding 100 µl of a 5% acetic acid solution and the absorbance was read at 650 nm. Artemisinin and chloroquine were included as the drug controls. IC₅₀ values were computed from the dose response curves of growth inhibition using XLfit 4.2 (IDBS, USA).
2.5. Assay for cytotoxicity

The in vitro cytotoxicity of the rhizome extract was determined against a panel of cancer and non-cancer cell lines. The assay was performed in 96-well tissue culture-treated plates. The cells were seeded to the wells of 96-well plate at a density of 25,000 cells/well and grown for 24 h. Samples at different concentrations were added and cells were further incubated for 48 h. Cell viability was determined by Neutral Red method [53]. IC_{50} values were obtained from dose response curves. Doxorubicin was included as drug control.

3. RESULTS

Microbiological assays of the rhizome extracts of *P. vulgaris* showed activity against fungal pathogen *Candida glabrata* with an IC_{50} value of 11 µg/ml. The results of all antimicrobial activity tests are shown in Tables 2 and 3.

Table 2. The test results of the antimicrobial activity of rhizomes and leaves extracts of *Pulsatilla vulgaris* Mill. (primary screen).

<table>
<thead>
<tr>
<th>Tested strain</th>
<th>Extracts from rhizomes (50 µg/ml)</th>
<th>Extracts from leaves (50 µg/ml)</th>
<th>Amphotericin B (5 µg/ml)</th>
<th>Ciprofloxacin (1 µg/ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C. albicans</td>
<td>24</td>
<td>11</td>
<td>100</td>
<td>ND</td>
</tr>
<tr>
<td>C. glabrata</td>
<td>98</td>
<td>14</td>
<td>100</td>
<td>ND</td>
</tr>
<tr>
<td>C. krusei</td>
<td>16</td>
<td>15</td>
<td>100</td>
<td>ND</td>
</tr>
<tr>
<td>A. fumigatus</td>
<td>11</td>
<td>21</td>
<td>99</td>
<td>ND</td>
</tr>
<tr>
<td>C. neoformans</td>
<td>40</td>
<td>0</td>
<td>82</td>
<td>ND</td>
</tr>
<tr>
<td>S. aureus</td>
<td>16</td>
<td>7</td>
<td>ND</td>
<td>89</td>
</tr>
<tr>
<td>MRSA</td>
<td>9</td>
<td>9</td>
<td>ND</td>
<td>94</td>
</tr>
<tr>
<td>E. coli</td>
<td>24</td>
<td>20</td>
<td>ND</td>
<td>96</td>
</tr>
<tr>
<td>P. aeruginosa</td>
<td>11</td>
<td>7</td>
<td>ND</td>
<td>100</td>
</tr>
<tr>
<td>M. intracellulare</td>
<td>0</td>
<td>0</td>
<td>ND</td>
<td>72</td>
</tr>
</tbody>
</table>

The results in %, ND – not determined.

Table 3. Dose response (IC_{50} in µg/ml) results of the rhizome extracts of *Pulsatilla vulgaris* Mill.

<table>
<thead>
<tr>
<th>Test strain</th>
<th>Extracts from rhizomes</th>
<th>Amphotericin B</th>
<th>Ciprofloxacin</th>
</tr>
</thead>
<tbody>
<tr>
<td>C. albicans</td>
<td>NA</td>
<td>0.19</td>
<td>ND</td>
</tr>
<tr>
<td>C. glabrata</td>
<td>11</td>
<td>0.37</td>
<td>ND</td>
</tr>
<tr>
<td>C. krusei</td>
<td>NA</td>
<td>0.67</td>
<td>ND</td>
</tr>
<tr>
<td>A. fumigatus</td>
<td>NA</td>
<td>sty.17</td>
<td>ND</td>
</tr>
<tr>
<td>C. neoformans</td>
<td>NA</td>
<td>0.18</td>
<td>ND</td>
</tr>
<tr>
<td>S. aureus</td>
<td>NA</td>
<td>ND</td>
<td>0.09</td>
</tr>
<tr>
<td>MRS</td>
<td>NA</td>
<td>ND</td>
<td>0.08</td>
</tr>
<tr>
<td>E. coli</td>
<td>NA</td>
<td>ND</td>
<td>0.01</td>
</tr>
<tr>
<td>P. aeruginosa</td>
<td>NA</td>
<td>ND</td>
<td>0.07</td>
</tr>
<tr>
<td>M. intracellulare</td>
<td>NA</td>
<td>ND</td>
<td>0.37</td>
</tr>
</tbody>
</table>

The results in IC_{50}, ND – not determined, NA – not active at 200 µg/ml.

The extracts from the rhizomes and leaves of *P. vulgaris* showed decreased ability to inhibit the growth of the other bacteria (*Staphylococcus aureus, MRSA, Escherichia coli, Pseudomonas aeruginosa*), and four different fungi (*Candida albicans, Candida krusei, Aspergillus fumigatus, Cryptococcus neoformans*)
pathogenic to humans. These extracts did not show any ability to inhibit the growth of the bacteria *Mycobacterium intracellulare* (Tables 2-3).

Antimalarial assays of the extracts from the rhizomes and leaves of *P. vulgaris* showed very low activity (1-8% of inhibition) against the protozoan, when the antimalarial drug chloroquine (positive control) showed 94-98% of inhibition.

The rhizome extract showed cytotoxicity to all the cell lines included in the assay. As shown in Table 4, the IC\textsubscript{50} for cytotoxicity was in the range of 35-57 µg/ml for each cell line indicating a general cytotoxic activity throughout the panel of cancer and non-cancer cells.

Table 4. Cytotoxicity of *Pulsatilla vulgaris* Mill. rhizome extract towards a panel of mammalian cell lines.

<table>
<thead>
<tr>
<th>Sample name</th>
<th>IC\textsubscript{50} µg/ml</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>SK-MEL</td>
</tr>
<tr>
<td>Rhizome extract</td>
<td>44</td>
</tr>
<tr>
<td>Doxorubicin*</td>
<td>1.7</td>
</tr>
</tbody>
</table>

Cell lines: SK-MEL - skin melanoma, KB - epidermal carcinoma, BT-549 - breast cancer, SK-OV-3 - ovarian cancer, LLC-PK1 - kidney epithelial, Vero - kidney fibroblast. *positive control drug

4. **DISCUSSION**

The *Pulsatilla* species (Ranunculaceae) produces a high diversity of secondary metabolites with a biological activity. The triterpene saponins, flavonoids and anthocyanidins from various *Pulsatilla* subsp. have demonstrated multiple biological properties including antitumor [46, 54, 55], cognition-enhancing [56, 57], neuroactive [58], neuroprotective [59], immunomodulatory [60], antioxidant [61], antimicrobial [20] and cytotoxic [12] activities. Additionally, they have potential beneficial effects as a chemopreventive agent for critical health conditions including cancer. Treatment with *Pulsatilla* saponin D resulted in inhibition of cell growth/proliferation, angiogenesis and induction of apoptosis in cancer [62]. *Pulsatilla* saponin D isolated from the root of *Pulsatilla koreana* Nakai showed potent inhibition rate of tumor growth (IR, 82%) at the dose of 6.4 mg/kg on the BDF1 mice bearing LLC cells [6]. The extracts of the rhizomes or roots from other species of the *Pulsatilla* species have been used for amoebic, dysentery, malaria, epistaxis, and internal hemorrhoids [9].

The fact that *Pulsatilla* species produce the high content of a variety of secondary metabolites allows an intense search for new natural-product derived drugs, especially new antibiotics and antifungal agents. It is very important because currently used antifungal drugs are not effective in 15-20% of cases against *Candida glabrata* [63]. *Candida glabrata* (H.W. Anderson) S.A. Mey & Yarrow (1978) is a pathogenic ascomycete yeast, which is the second most frequent causative agent of human candidiasis [63]. *C. glabrata* is an opportunistic pathogen of the urogenital tract, and of the bloodstream. It is especially aggressive in HIV positive people, and the elderly [64]. There are two potential virulence factors that contribute to the pathogenicity of *C. glabrata*. The first is a series of adhesins coded by the EPA (epithelial adhesin) genes. These genes, located in the subtelomeric region, can respond to environmental cues that allow them to be expressed “en masse” so the organism can adhere to biotic and abiotic surfaces in microbial mats. This is also the suspected mechanism by which *C. glabrata* forms microbial “biofilms” on urinary catheters, and less commonly in-dwelling catheters. It also causes problems with dental devices, such as dentures [64].

Although *C. glabrata* is listed as the second most virulent yeast after *Candida albicans*, little information is available regarding its identification and treatment of infection. A major phenotype and potential virulence factor that *C. glabrata* possesses is low-level intrinsic resistance to the azole drugs, which are the most commonly prescribed antifungal medications. These drugs, like fluconazole and ketoconazole,
are not effective in 15-20% of cases against C. glabrata [63]. It is still highly vulnerable to polyene drugs such as amphotericin B and nystatin, along with variable vulnerability to flucytosine and caspofungin. Amphotericin B vaginal suppositories are used as an effective form of treatment in combination with boric acid capsules as they are not absorbed into the blood stream. Amphotericin B vaginal suppositories have also been used in case studies to treat chronic infections, both symptomatic and asymptomatic [63]. However high renal toxicity and other side effects of amphotericin B contained drugs make the use of such therapy the last resort approach. In the light of the limitation of existing antifungal therapy against C. glabrata the search for new safer drugs and natural-products-derived agents or herbal preparations is highly desirable. The high antifungal activity (IC$_{50}$ 11 µg/ml) of crude rhizome extracts of P. vulgaris against C. glabrata and the relatively high cytotoxicity (IC$_{50}$ 35-57 µg/ml) towards a panel of mammalian cell lines prompts further research on isolation and identification of biologically active components from this species. The designated activity of rhizome extract of P. vulgaris below the threshold of observed toxicity qualify this species for further studies toward homeopathic therapy of candidiasis caused by pathogenic C. glabrata.

In 2015, the application for an invention patent titled “The use of Pulsatilla vulgaris Mill. in the treatment of fungal diseases” was submitted to the Polish Patent Office by the authors of this publication. Pharmaceutical application of extracts from P. vulgaris was patented by other authors [65-67]. The first invention provides an herbal extract pharmaceutical composition including P. vulgaris and its use in medicine. The application of this therapeutic extract increases the effectiveness in treating bloating. The second invention relates to an herbal composition comprising extract from P. vulgaris and use of this for preventing or treating skin diseases. The next application as antimicrobial composition includes an effective extract of plant of the Ranunculaceae family in that P. vulgaris.

The genus Pulsatilla comprises about 30 species, but P. vulgaris is an allotetraploid (2n=32) and may have occurred following hybridization between P. patens (2n=16) and P. pratensis (2n=16) [68]. Pulsatilla vulgaris Mill. is an early-flowering, long-lived, polycarpic hemicyryptophyte herb of conservation concern and specialist species of calcareous grasslands across central Europe, ranging from France in the south to Sweden at its northern limit [33]. The current range this species is characterized by a high level of fragmentation, since numbers and sizes of populations have declined considerably during the last few decades, mainly as a consequence of land-use changes [29]. The reasons for the loss this species include mainly ploughing-up of calcareous grassland [31], cessation of traditional grazing practices [69], increased above-ground competition from coarse grasses and shrubs, what caused impossibility colonized restored habitats [32]. Consequently, small and fragmented populations showed signs of genetic depauperation due to genetic drift [29].

Numerous applications of P. vulgaris in traditional medicine are one of the reasons for reducing the abundance of this species. P. vulgaris is listed as “near threatened” by the International Union for Conservation of Nature [70]. Currently P. vulgaris is listed as vulnerable (VU category) in Ukraine, Slovakia [71], Sweden [72] and United Kingdom [73]. In Germany, it is classified as lower risk (LR category), however subsp. grandis (Wender.) Zamels listed as critically endangered (CR category) and subsp. vulgaris listed as endangered (EN category) [74]. This species is also listed as endangered (EN category) in Switzerland [75] and as critically endangered (CR category) in Austria [76]. In the “Red List of Vascular Plants in Poland” [77] and “Polish Red Data Book of Plants” [78] it is classified as extinct (EX category) species. In order to obtain larger amount of plant material for future study, a cooperation agreement was signed between the Białystok University of Technology and Botanical Garden “Herbal Corner”, from where cultivated plant species were transferred from the Botanical Garden to our laboratories.

P. vulgaris in Poland is mainly cultivated. In Denmark, Germany and Sweden it is still relatively widespread, but appears to have declined, especially in Sweden [72] and Germany, where it’s populations are now small and highly fragmented [29]. In Austria, only around 2000 plants now survive in 23 sites [79] and Switzerland where it is very rare [33]. In Belgium it is confined to two small areas (Quentin Groom, pers. comm.). In Luxembourg it is declined from 28 to 5 localities [80]. In England P. vulgaris is a threatened herb.
that declined from 130 to 33 sites between 1750 and the 1960s [31]. *P. vulgaris* appears to be extinct in Finland, where it has not been seen since the 1930s [81].

Acknowledgments: We thank Prof. Jordan K. Zjawiony, Dr Melissa Jacob and Dr Shabana Khan from University of Mississippi for determining biological activity of the extracts. This study was supported by a grant nr S/WBiIŚ/5/16 from the Ministry of Science and Higher Education of Poland and by grants nr Al 27094 from NIH, NIAID, Division of AIDS and from USDA Agricultural Research Service Specific Cooperative Agreement no. 58-6408-1-603 of the United States.

Author Contributions: GL suggested the concept, writing the manuscript and approved the final version. AS did extensive literature search and writing the manuscript.

Conflict of Interest: The authors declare no conflict of interest.

REFERENCES

34. drugs.com, 2000-2014. Drugs.com know more be sure, Auckland 0632 New Zealand: Mission Statement “to empower patients with the knowledge to better manage their own healthcare and to improve

47. NCCLS: National Committee on Clinical Laboratory Standards, 2002; 22: 15.

50. NCCLS: National Committee on Clinical Laboratory Standards, 2006; 26: 2.

