Study of algal mediated biosynthesis of nanoparticle: future of green nanotechnology

  • Indranil Singh Amity Institute of Biotechnology, Amity University Madhya Pradesh, Gwalior, India
  • Sakshi Singh Amity School of Engineering and Technology, Amity University Madhya Pradesh, Gwalior, India
Keywords: Algae, Biosynthesis, Gold nanoparticles (AuNPs), Silver nanoparticles (AgNPs), Nanotechnology

Abstract

Nanotechnology has today turned out to be a buzzword. Its expansion in a different field is phenomenal. But for some reason, it has been holding the rate of development. To count reason behind being its failure despite such promising properties is its high-cost production and potential harm to nature. Beside the less significant amount of production, there is a need for the eco-friendly, less toxic and cleaner method of its production. It could not have been more favorable, in case if it could lead to an increase in production at the same time in its efficiency too. Algae mediated biosynthesis of the nanoparticle is one of the probable solutions of the above-mentioned drawbacks. This review article focuses on the synthesis of nanoparticles with help of algae and their potential benefits over conventional based methods. It takes into consideration, the formation of nanoparticle through cyanobacteria, microalgae, and macroalgae.

DOI: http://dx.doi.org/10.5281/zenodo.2666643

References

1. Daniel MC, Astruc D. Gold nanoparticles: assembly, supramolecular chemistry, quantumsize-related properties, and applications toward biology, catalysis, and nanotechnology. Chem Rev. 2004; 104(1): 293-346.

2. Invernizzi N. Nanotechnology between the lab and the shop floor: what are the effects on labour? J Nanoparticle Res. 2011; 13: 2249-2268

3. Roco MC. The long view of nanotechnology development: the National Nanotechnology Initiative at 10 years. J Nanoparticle Res. 2011; 13: 427-445.

4. Nair B, Pradeep T. Coalescence of nanoclusters and formation of submicron crystallites assisted by Lactobacillus strains. Cryst Growth Des. 2002; 2(4): 293-298.

5. Lin Z, Wu J, Xue R, Yang Y. Spectroscopic characterization of Au3+ biosorption by waste biomass of Saccharomyces cerevisiae. Spectrochim Acta A Mol Biomol Spectrosc. 2005; 61(4): 761-765.

6. Lengke MF, Ravel B, Fleet ME, Wanger G, Gordon RA, Southam G. Mechanisms of gold bioaccumulation by filamentous cyanobacteria from gold (III)-chloride complex. Environ Sci Technol. 2006; 40(20): 6304-6309.

7. Nowack B, Bucheli TD. Occurrence, behavior and effects of nanoparticles in the environment. Environ Pollut. 2007; 150: 5-22.

8. Buzea C, Blandino IIP, Robbie K. Nanomaterials and nanoparticles: sources and toxicity. Biogeosciences. 2007; 2: MR17-MR71.

9. Perez-de-Luque A, Cifuentes Z, Beckstead JA, Sillero JC, Avila C, Rubio J, Ryan RO. Effect of amphotericin B nanodisks on plant fungal diseases. Pest Manag Sci. 2012; 68: 67-74.

10. Khot LR, Sankaran S, Maja JM, Ehsani R, Schuster EW. Applications of nanomaterials in agricultural production and cropprotection: a review. Crop Prot, 2012; 35: 64-70.

11. Doria G, Conde J, Veigas B, Giestas L, Almeida C, Assuncao M, et al. Noble metal nanoparticles for biosensing applications. Sensors. 2012; 12: 1657-1687.

12. Jeffryes C, Agathos SN, Rorrer G. Biogenic nanomaterials from photosynthetic microorganisms. Curr Opin Biotechnol. 2015; 33: 23-31.

13. Mittal AK, Chisti Y, Banerjee UC. Synthesis of metallic nanoparticles using plant extracts. Biotechnol Adv. 2013; 31: 346-356.

14. Kharissova OV, Dias HVR, Kharisov BI, Perez BO, Perez VMJ The greener synthesis of nanoparticles. Trends Biotechnol. 2013; 31: 240-248.

15. Borowitzka MA. High-value products from microalgae - their development and commercialisation. J Appl Phycol. 2013; 25: 743-756.

16. Fon Sing S, Isdepsky A, Borowitzka MA, Moheimani NR. Production of biofuels from microalgae. Mitig Adapt Strateg Glob Chang. 2013; 18: 47-72.

17. Pádrová K, Lukavský J, Nedbalová L, Čejková A, Cajthaml T, Sigler K, et al. Trace concentrations of iron nanoparticles cause overproduction of biomass and lipids during cultivation of cyanobacteria and microalgae. J Appl Phycol. 2015; 27: 1443-1451.

18. Gupta AK, Gupta M. Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials. 2005; 26(18): 3995-4021.

19. Gleich B, Weizenecker J. Tomographic imaging using the nonlinear response of magnetic sparticles. Nature. 2005; 435(7046): 1214-1217.

20. Lu AH, Schmidt W, Matoussevitch N, Bonnemann H, Spliethoff B, Tesche B, et al. Nanoengineering of a magnetically separable hydrogenation catalyst. Angew Chem. 2004; 116(33): 4403-4406.

21. Xie J, Lee S, Chen X. Nanoparticle-based theranostic agents. Adv Drug Delivery Rev. 2010; 62(11): 1064-1079.

22. Jiang J, Oberdorster G, Biswas P. Characterization of size, surface charge, and agglomeration state of nanoparticle dispersions for toxicological studies. J Nanopart Res. 2009; 11(1): 77-89.

23. Dahoumane SA, Djediat C, Yepremian C, Coute A, Fievet F, Coradin T, Brayner R. Recycling and adaptation of Klebsormidium flaccidum microalgae for the sustained production of gold nanoparticles. Biotechnol Bioeng. 2012; 109: 284-288.

24. Dahoumane SA, Wijesekera K, Filipe CDM, Brennan JD. Stoichiometrically controlled production of bimetallic gold-silver alloy colloids using micro-alga cultures. J Colloid Interface Sci. 2014; 416: 67-72.

25. Dahoumane SA, Yéprémian C, Djédiat C, Couté A, Fiévet F, Coradin T, Brayner R. A global approach of the mechanism involved in the biosynthesis of gold colloids using micro-algae. J Nanopart Res. 2014; 16: 2607.

26. Abdel-Raouf N, Al-Enazi NM, Ibraheem IBM. Green biosynthesis of gold nanoparticles using Galaxaura elongata and characterization of their antibacterial activity. Arab J Chem. 2017; 10(Suppl. 2): S3029-S3039.

27. Eroglu E, Chen X, Bradshaw M, Agarwal V, Zou J, Stewart SG, et al. Biogenic production of palladium nanocrystals using microalgae and their immobilization on chitosan nanofibers for catalytic applications. RSC Adv. 2013; 3: 1009-1012.

28. Oza G, Pandey S, Mewada A, Kalita G, Sharon M. Facile biosynthesis of gold nanoparticles exploiting optimum pH and temperature of fresh water algae Chlorella pyrenoidusa. Adv Appl Sci Res. 2012; 3: 1405-1412.

29. Parial D, Patra HK, Dasgupta AK, Pal R. Screening of different algae for green synthesis of gold nanoparticles. Eur J Phycol. 2012; 47: 22-29.

30. Singh G, Babele PK, Kumar A, Srivastava A, Sinha RP, Tyagi MB. Synthesis of ZnO nanoparticles using the cell extract of the cyanobacterium, Anabaena strain L31 and its conjugation with UV-B absorbing compound shinorine. J Photochem Photobiol B. 2014; 138: 55-62.

31. Chakraborty N, Banerjee A, Lahiri S, Panda A, Ghosh AN, Pal R. Biorecovery of gold using cyanobacteria and an eukaryotic alga with special reference to nanogold formation - a novel phenomenon. J Appl Phycol. 2009; 21: 145-152.

32. Sudha SS, Rajamanickam K, Rengaramanujam J. Microalgae mediated synthesis of silver nanoparticles and their antibacterial activity against pathogenic bacteria. Indian J Exp Biol. 2013; 51: 393-399.

33. Ali DM, Sasikala M, Gunasekaran M, Thajuddin N. Biosynthesis and characterization of silver nanoparticles using marine cyanobacterium Oscillatoria willei NTDM01. Dig J Nanomater Bios. 2011; 6: 385-390.

34. Ali MD, Gopinath V, Rameshbabu N, Thajuddin N. Synthesis and characterization of Cds nanoparticles using c-phycoerythrin from the marine cyanobacteria. Mater Lett. 2012; 74: 8-11.

35. Parial D, Pal R. Biosynthesis of monodisperse gold nanoparticles by green alga Rhizoclonium and associated biochemical changes. J Appl Phycol. 2015; 27: 975-984.

36. Barwal I, Ranjan P, Kateriya S, Yadav SC. Cellular proteins of Chlamydomonas reinhardtii control the biosynthesis of silver nanoparticles oxido-reductive. J Nanobiotechnol. 2011; 9: 1-12.

37. Elumalai S, Santhose BI, Devika R, Revathy S. Collection, isolation, identification, and biosynthesis of silver nanoparticles using microalga Chlorella pyrenoidosa. Nanomechanics Sci Technol Int J. 2013; 4: 59-66.

38. Jena J, Pradhan N, Dash BP, Sukla LB, Panda PK. Biosynthesis and characterization of silver nanoparticles using microalga Chlorococcum humicola and its antibacterial activity. Int J Nanomater Bios. 2013; 3: 1-8.

39. Jena J, Pradhan N, Aishvarya V, Nayak RR, Dash BP, Sukla LB, et al. Biological sequestration and retention of cadmium as CdS nanoparticles by the microalga Scenedesmus-24. J Appl Phycol. 2015; 27(6): 2251-2260.

40. Mohseniazar M, Barin M, Zarredar H, Alizadeh S, Shanehbandi D. Potential of microalgae and Lactobacilli in biosynthesis of silver nanoparticles. BioImpacts. 2011; 1: 149-152.

41. Karn B. The road to green nanotechnology. J Ind Ecol. 2008; 12: 263-266.

42. Kathiraven T, Sundaramanickam A, Shanmugam N, Balasubramanian T. Green synthesis of silver nanoparticles using marine algae Caulerpa racemosa and their antibacterial activity against some human pathogens. Appl Nanosci. 2015; 5: 499-504.

43. Naveena BE, Prakash S. Biological synthesis of gold nanoparticles using marine algae Gracilaria corticata and its application as a potent antimicrobial and antioxidant agent. Asian J Pharm Clin Res. 2013; 6: 179-182.

44. Sharma B, Purkayastha DD, Hazra S, Gogoi L, Bhattacharjee CR, Ghosh NN, Rout J. Biosynthesis of gold nanoparticles using a fresh water green alga, Prasiola crispa. Mater Lett. 2015; 116: 94-97.

45. Dhanalakshmi PK, Azeez R, Rekha R, Poonkodi S, Nallamuthu T. Synthesis of silver nanoparticles using green and brown seaweeds. Phykos. 2012; 42: 39-45.

46. Abboud Y, Saffaj T, Chagraoui A, Bouari AE, Brouzi K, Tanane O, Ihssane B. Biosynthesis, characterization and antimicrobial activity of copper oxide nanoparticles (CONPs) produced using brown alga extract (Bifurcaria bifurcata). Appl Nanosci. 2014; 4: 571-576.

47. Azizi S, Namvar F, Mahdavi M, Ahmad MB, Mohamad R. Biosynthesis of silver nanoparticles using brown marine macroalga, Sargassum muticum aqueous extract. Materials. 2013; 6: 5942-5950.

48. Govindaraju K, Krishnamoorthy K, Alsagaby SA, Singaravelu G, Premanathan M. Green synthesis of silver nanoparticles for selective toxicity towards cancer cells. IET Nanobiotechnol. 2015; 9(6): 325-330.

49. Azizi S, Ahmad MB, Namvar F, Mohamad R. Green biosynthesis and characterization of zinc oxide nanoparticles using brown marine macroalga Sargassum muticum aqueous extract. Mater Lett. 2014; 116: 275-277.

50. Prasad TNVKV, Kambala VSR, Naidu R. Phyconanotechnology: synthesis of silver nanoparticles using brown marine algae Cystophora moniliformis and their characterisation. J Appl Phycol. 2013; 25: 177-182.

51. Ghodake G, Lee DS. Biological synthesis of gold nanoparticles using the aqueous extract of the brown algae Laminaria japonica. J Nanoelectron Optoelectron. 2011; 6: 268-271.

52. Rajesh S, Raja DP, Rathi JM, Sahayaraj K. Biosynthesis of silver nanoparticles using Ulva fasciata (Delile) ethyl acetate extract and its activity against Xanthomonas campestris pv. malvacearum. J Biopest. 2012; 5: 119-128.
Published
2019-05-04
How to Cite
Singh, I., & Singh, S. (2019). Study of algal mediated biosynthesis of nanoparticle: future of green nanotechnology. Current Life Sciences, 5(1), 7-14. Retrieved from http://www.journals.tmkarpinski.com/index.php/cls/article/view/115
Section
Review Articles